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ABSTRACT

The first density corrections to the transport coefficients are
investigated for the case of a quantum gas of spherical particles. The
development is based upon a truncation of the quantum mechanical BBGKY
equations. For this purpose, the pair distribution function is expressed
in terms of singlet distribution functions through the definition of a
quantity Y . The BBGKY hierarchy is then truncated by the approxima-
tion that Y may be replaced by its equilibrium value. The first of
the BBGKY equations is shown, on the basis of a pair distribution
function obtained in this manner, to lead to a quantum mechanical Boltz-

mann equation which is generalized to include both collisional transfer



i
and three-body contributions. This equation is solved by the method of
Chapman and Enskog and expressions obtained for the transport coefficients.

Numerical computations for the two-body contributions to the first
transport virial coefficients are presented for a quantum gas of rigid
spheres. The three-body terms are shown to lead, in the classical limit,

to the results of Hoffman.
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CHAPTER L

INTRODUCTION

Statistical mechanics has as its goal the prediction of the
macroscopic behavior of large aggregates of matter in terms of the
dynamical properties of the constituent particles. The field divides
logically into two branches: equilibrium and non-equilibrium statis-
tical mechanics. The former is concerned with those thermodynamic
properties which characterize the equilibrium state; the latter deals
primarily with the interpretation of the transport phenomena observed
in non-equilibrium systems.

The first mathematically rigorous kinetic theory investigations
began in 1872 with the development, by Boltzmannl, of an integro-
differential equation governing the time evolution of a singlet
distribution function for a gas displaced from equilibrium. The
original Boltzmann equation, while valid only for dilute, classical
gases of spherical particles, is not further restricted as to the
exact form of the molecular interaction. No solution to the Boltzmann
equation for an arbitrary intermolecular potential appesred for nearly
half a century after its‘introduction. Finally, in the period 1916-1917,
Chapman2 and Enskog3 independently developed méthods of solution which
produced identical results. These led to expressions for the transport

- : : R . b
coefficients which were in good agreement with experiment

.



Massey and Mohfﬁ were the fii investigators to attempt to
generalize the results of Chapman and Enskog to include gquantum effects.
On an intuitive basis, they replaced the classical differential cross-
section with its quantum analogue in the expressions for the transport
coefficients. In a more rigorous treatment, Uehling and Uhlenbeck6
subsequently confirmed that this simple modification correctly took
into account quantum mechanical diffraction effects. Their results
further extended the theory to include gross statistics effects. At
this point, the kinetic theory of dilute gases is in substantial
agreement with experiment, except for inadequacies in our knowledge
of Intermolecular forgesaa

The task of generaligzing the Boltzmann equation to a consideration
of moderately dense gases is far more difficult. Enskog7 presented
the first such treatment. With an intuitive modification of the
Boltzmann equation, Enskog succeeded in deriving expressions for the
transport coefficientskcf a modarately dense classgical gas of rigid
spheres that took into account both the finite size of the spheras and
three-body effects.

Since the techniques Enskog applied to rigid spheres were not
readily extended to the treatment of soft potentials, it became nece-

; 8 ; 9
ssary to consider a more general approach. Bogolubov , Born and Green”,

- 10 < 11 . 5 ) . P .
Kirkwood™ ', and Yvon™ ~, by foxmally integrating the Liouville equation,
obtained an infinite hierarchy of equations, the first of which can be

shown to lead to the Bolt:

rann equation.
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Various schemes, such as the assunption of "molecular chaos™’,
have been used to truncste the hierarchy. By solving the resulting
equations, it is then possible to construct density corrections to
the transport coefficients which are valid for soft potentials.
Using this approach, Snider and Curtisslz derived first density cor-
rections to the thermal conductivity and shear viscosity of a classical
gas which took into account the effects of collisional transfer and
are valid for any type of intermolecular potentisl. Hoffman and
Curtissl3 managed to truncate the BBGKY hievarchy with & generaliza-
tion of the molecular chaos agssumption to obitain a soft potential
analogue of the Enskog dense gas equation which included both collisional
transfer and three~body effects. Numerical computations suggest rea-
sonable agreement with experimentlaq

Few resulis have, as yet, appeared for the transport coefficients
of moderately dense quantum gases. Hoffman, Mueller, and Curtissls
have constructed a quantum analogue to the Boltzmann equation which
includes collisional transfer. IﬁﬁmmRahajoelé solved the gquantum
mechanical BBGKY equations in terms of phase gpace transformation
functions. By introducing the assumption of molecular chaog, his
solution led to results for the collisional transfer contributions to
the transport coefficients.
ation function

Recently, several investigators have used the correl

Fficients which

are vall has emploved



this formalism to compute the collisional transfer contxibutions to
the first density corrections to the transport coefficients of a
moderately dense quantum gas of rigid spheres.

In the present study, we express the pair distribution function
in terms of singlets through the definition of a quantity Y. An
exact determinatcion of Y would require a complete solution to all N
equations of the hierarchy. We instead truncate the hierarchy by
assuming that the non-equilibrium Y may be replaced, in approximation,
by its equilibrium value in our expression for the pair distribution
function. The first equation of the quantum mechanical BBGKY hier~
archy is then shown, on the basis of the pair distribution function
obtained in this approximation, to lead to a quantum mechanical Boltz-
mann equation which is generalized to include both collisional transfer
and three-body effects. This approach may be regarded as a quantum
mechanical generalization of that used by Hoffman14 in a purely
classical study.

A solution to this generalized Bolizmann equation, based upon a
perturbation method developed by Chapman and Enskog2’3 and discussed
in detail by Chapman and Cowlinglg, yields an expression for the non-
equilibrium singlet distribution function which is valid in the near-
equilibrium approximation. From this, the transport coefficients are
obtained for a gas of particles which interact through a purely
repulsive potential.

Numerical computations for the two-body contributions to the first

transport virial coefficients are presented for a quantum gas of rigid



spheres. The three-buody terms are shown to lead, in the classical

limit, to the vesults of Hoffmale,



CHAPTER IT

THE BOLTZMANN EQUATION

The development of classical statistical mechanics is based
upon the comnstruction of an ensemble of dynamically similar systems
and a distribution function defined in a suitable phase space. These
concepts are not directly applicable to the study of quantum systems,
however, because the uncertainty principle prohibits assigning a
system point an exact location in phase space. In this chapter, a
phase space formulation of quantum mechanics based upon the Wigner
distribution function is shown to lead to the quantum analogue of
the BBGKY hierarchy. The formal reduction of the N-particle problem
and the truncation of the hierarchy then follow from the assumption

of an appropriate approximate form for the pair distribution function.

2.1 BBCGKY Equations

We consider a system composed of a large aumber N of identical,
spherical particles which interact through a potential function which
is pair-wise additive, primarily repulsive, and of short range. The
potential may be taken to have a weakly attractive portion, but bound
states are specifically excluded.

The Hamiltonian operator appropriate to such a system is



(2-1)

where rij refers to the distance between particles i and j. The form
of the classical Hamiltonian function then follows directly from the

correspondence principle:

ng%ﬁ % . Z&@w

The state of an N-particle quantum system is described by its
density matrix é/ﬁ?m , which may be defined in terms of the

system wave function iM as

/O ( M‘,,OM t) #.:.?3/,@ (g,..gfm “”rﬂj{@’)

(2-3)
= %(fwg‘w %;*(EOM;“@> B

The time development of ,f“%w is then determined by the Heisen-

berg equation of motion:

T

(2-4)



If we consider an ensemble consisting of a large number of d&namic—
ally similar N-particle systems, a statistical probability density
matrix, &3 , may be defined as the average over the ensemble
of /A%v . Then, according to Wignerzo, an N-particle distribu~
tion function suitable for quantum systems may be expressed as a

Fourier transform of ﬂFL

(2-5)

Feap=nB) e

¥

Clearly, @z is also a solution to equation (2-4). The normali

zation

drud}PM £(r”§7bw;,t) = N! (2-6)

follows directly from the definition of 6;3 and the normaliza-
tion of the system wave functions. From a knowledge of fy» any

desired contraction may be obtained from

|
oot el .

With this definition of fN’ some average values may be calculated from

formulae that are entirely analogous to those used in the classical



case, although the distribution function itself cannot be interpreted
in terms of probability concepts.
Moyalz1 has shown that the time evolution of the Wigner distri-

bution function is governed by

ok
= [HA],

(2-8)

where the Moyal bracket is defined by

= N
2. dd _J d 29
%sm %Z o @9}@5 QF‘.QF‘? Hm%e

Here the superscripts indicate the function on which the differential
operators act. In the classical limit, the Moyal bracket becomes the
Poisson bracket and equation (2-8) reduces to the Liouville equation
of classical statistical mechanics.

Substitution of equation (2~2) for the classical Hamiltonian

function into (2-8) leads directly to the well-known Wigner equation22

s
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(]

Z

(2-10)

where

The Wigner equation then equivalently determines the temporal develop—
ment of the N-particle distribution function for this system.
By integrating the Wigner equation over (N-bM) coordinates and

momenta, we obtain the quantum analogue to the BBCRY equations of

mechanics:




o
fot

where the opevaior {E%@%w is defined by

G =6_-6,

M) M1 (2-13)

The hierarchy of equations (2~12) then governs the time evolution of

the lower order (M < N) distribution functions.

2.2 Tyruncation of the Hierarchy

In physically interesting ptoblems, we are seldom required to
know the properties of more than the wvery lowest order distribution
functions. Unfortunately, because of the coupling between equations
of the hierarchy, an exact solution of any one would require a complete
solution to the N-parcticle Wigner equation. No completely wrigorous
theoretical basis for a truncation of the hievarchy has yet appeared,
although numerous approximate techniques have been suggested. In this
study, we truncate the hievarchy by an approximate technique which
may be regarded as the quantum mechanical analogue to that used by
Hoffman14 in a purely classical treatment.

We begin by defining the operator
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(2~15)

f=h+h %% Hp-b)

H 5,~ XS
The wave function . ig.a solution to the relative motion
= 3

Schrodinger equation:

7 &

”%gi@@ Qo) @%” . %

dr’ dr’

(2~16)

with the boundary condition that it represents asymptotically an
g
incident plane wave of momentum and scattered waves.

w

., 62) ,
The integral operator g 2 0 is & phase space trans-

. Leo 21 ; i L .
formation function™ which corresponds to the classicsl streamin

[6102

D (2) ‘
operatoy s o The two differ in that the

acts to retrace a particle back along a classleal trajectory while no
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0

uch well-defined trajectory exists in the gquantum tsse.
With this, the pair distribution function may be expressed in

terms of singlets through the definitiocn of a quantity ¥:

;,O,ﬁ?g?@ Yf?f j?}ézq ) de dr dib@ 1Z38

“t0 20
(2-17)

s bephlank ) b0 f e bt

0

If "molecular chaos”

is assumed, Y is unity, and the pair distribution
function (2-17) becomes identical to the form introduced by Imam-

., le S . . ) .
Rahajoe™ . 1In the limit e s ¥ reduces to the analogous

e P T 14 . N
quantity considered by Hoffman™ for a classical system.

An exact determination of the guantity ¥ would reguire solving
all N equations of the BBGKY hierarchy. We instead complets the
truncation of the hierarchy with the assumption that ¥ may be replaced,
in approximation, by its equilibrium value Ye in our expression (2~17)
for the pair distribution funciion. In this approximation, sguation

(2-17) may be substituted into the first equation of the hierarchy,

(2~18)




to yield:

Xﬁz (En wzgghaﬁa@}%@%g) 0 (EG@:?»}%@:» %% @;z@%;b@@)

(2-19)

Since all quantities in equations (2~18) and (2-19) are evaluated at

the same time, this dependence has been suppressed in the notation.

2.3 The Boltzmann Equation

Since the left-hand side (LHS) or "streaming' part of equation
(2~19) contains only quantities localized at £y, it is evident that
the right-hand side (RHS) must be similarly locslized by expanding
Y, and the singlet distribution fuunctions about their values at LS

Retaining only terms linear in the gradient gp s
=0




QUSRI A G TSN

<10 =260 F 20
(2~20)

SN UNES TP EPEAT ST

' %@?@ (Emw rjé 3: %Q'?ﬁé;b ,

where the local dependence on ¥, has been suppressed in the notation.

We shall see later that, for the purpose of evaluating the transport
coefficients, the approximation of vetaining only terms linear in

the gradients is, in fact, exact.

After transforming to center~of-mass and relative wmorion co-
fay

ordinates, the integral operator ey e may be substituted
5 & }

explicitly into equation (2-20) and the Eb and %g integrations
=g
performed trivially. The v and @7 integrations may be carried

out exactly using the properties

The result,

after some manipulation, may be wiitten




The res



Equation (2-21) is than the desired quantum mechanical Boltzmann
equation, modified to include collisional tvansfeyr asuvd three~body

effects in an approximate manner, and we shall refer to it as simply

the Boltzmann equation. It may be shown that this form

- .16 w s o . .
that of Imam-Rahajoe€  when Ie is taken to have s value of unity,

2.4 Linearization of the Boltzmann Eguation

The transport coefficients are defined in terms of a 13

approximation for the depasndence of the

on the sygtem gradients and are v

equilibrium.
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coefficients, it is only necessary to solve the Bolozmann equation for
a singlet distribution function which is correct through fivst order

3

in the gradients. For this reason, it is convenient to linearize the
o , ) o o .3
Boltzmann equation by a perturbation expansion due to Enskog™.

The distribution function may be represented as a power series

in a uniformity parameter é: :

The uniformity parameter €  then serves as & measure of the devia-
Yy I
tion from equilibrium and its powers may be taken to vepresent the
orders of the gradisnts of the macroscopic varishbles. 1In tha final
expressions, € will be assigned a value of unity.
Cars e‘éﬁp - 3 3 T : & s g P2

The quantity [ ( ﬁévzﬁfﬁg is a Wigner distribution function
defined on the relative moticon phase space of itwo particles. Conge-
quently, F:€£%$?>$%> is a time~independent solution to the Wigner

equation for the relative motion of two particles:

21 & - A

Substituting the expansion (Z2-~23) iuto the Boltzmann equation,

retalning only terms of zero order in the gradients, and making use

of equation (Z-2%4), we obtain the ecuilibriuwm souation:
7 os B




Y [ Y o His

sedpdh, 8 Vb Fleb DR () = 0

e (2-25)

If linear terms in the perturbation are kept, the singlet distri-

bution function may be written in terms of the equilibrium funciion as

i {1

0 (2-26)
where the perturbation function gﬁ is taken to be linear in

the gradients. The streaming part of the Bolizmann equstion is
already linear in the gradients, thus linear in ~ . snd becomes

simply

%@ﬁ

fé 13 ; - | (2-27)
5t mbar [ 1)

Through terms linear in the gradients, the RHS of the Boltzmann

equation is



e
k

| JF d
) ;};2) %L}f AWZEQZH?L@@@% éﬂz@% fdr «}

72

-
‘{"EE)F@AD@ & %@Z@ "4

§=y

L

Heeb o) BIDFF o=

, . . A B - ,
Here the vector functions =@ and é;g%@ differ from the

quantities defined in (2-22) only through the substitution of the

equilibriuvm form of the singlet distribution functions.
v order eguation and rearranging,

After subtracting out the zero

Zant equatlon hacomeg

the lineavized form of tha Bals
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itions which are time-iundependent functlonals
of the three macroscopic variables are of interest, we require that

the defining equations for the number density n, stream velocity u,

and temperature T should hold for both the equilibrium and the perturbed

distributions. This leads to the following suxiliayy conditions on

gﬁ : .
W[L0e] = n[f]

u[1.0+8] = u[t.]
e[t (+9)] =EIf,

(2~30)

The number density, stream velocity, and energy density E are defined

explicitly in Chapter II1 (Eq. 3-40).

2.5 Eguations of Change

According to the Enskog technique, we choose solutions to

equation (2-~29) for which the time development of f. arises only

1
from a dependence upon the macroscopic variables n, u, and T. In
this section, the equations of change are emploved to remove the

explicit time dependence from the linearized Boltzmann equation.

Since we ultimately seek only the first density corrections to the
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transport coefficients, 1t will be convenient to discard terms cubic
and higher in the number density in the following development.
The three equations of change are independent of the choice of

/
; . N e a . : PR
microscopic descripition of the system and may be written :

Equation of Continuity

'3—% + j—zze:(n@ = () (2-31)

Equation of Motion

Ju 3 g
oty wR s P -0

Equation of Fnergy Balance

where j; is the pressure tensor and E; the heat flux vector.

At equilibrium,

F =PU

sy o

(2-32)

ggz @

where gﬁ is the hydrostatic pressuve.

vl

etaining terms up to

@

quadratic in the number density, %é mav be written as the virial
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expansion:

H = nKT{ﬁ + WB}

(2-33)

The equilibrium energy density may then be expressed in terms of the

/,
oo - e e 4
second virial coefficient as :

—2 de '
E;"“” 2 WKT -n*KT (2-34)

Substitution of equations (2-32) into the equations of change then

yvields their equilibrium forms, the Buler equations:

éﬂ =
b am (nu) =0
Uy dy s P g e

ey oy g2t {E+Plipu=0

Combining equation (2-34) and the last of equations {2-35) then

leads to an equation of change for the temperature:



T Y
é';g" e = 4
db = Jr,

rar{ienBe o748  3aT 4B}y = 0

§
(2~36)
Be defining
P: = z& = u (2-37)

and the substantial time derivative,

% = 3‘% + U- %’Eﬁ (2-38)

the streaming part of the Boltzmann equation may be rewritten as

Bied e

Considering the functional dependence of jg@ on the macroscoplc

variables and simply writing out the total derivatives, (2~3%) becomes



(2~40)

13 @MW%@P é@ ‘QJ&%@@ ‘@s% %
m o Ju w@”@g‘jaﬂ Ju Dt e

(2~41)

for the local singlet equilibrium distribution function, where the

lowest order term is the familiay Boltzmann form

A 2
AW
= = @ (2~42)
u h

&

and
bl | R e
g e B
= }Vc [2wmiT (2-43)
pe g{ IR i A S
b 2m KT v
n
Aa explicit expression fox ’“C will be adopted in the next
section, but at this polint it is only e y o oassume Lt £o be

a function of only the magnitude of P



With the Euler equations (2~35) and (2~36), the substantive
derivatives may be removed from (2-40) and the streaming part of the
Boltzmann equation finally written as a linear combination of the

macrogcopic gradients:

(2-44)
here ~ ? T
wiie B/ A 3
. (2XT)2 dB d __g,g}}
’gnﬁ;} W ﬁ%ww)iemﬁﬁ-%‘rjﬁ} e " Juk ~ T 97
dx
% A J-g }
L =-~2an =°”u‘{£@”“ JWF
] af (2~45)
M =%alW, 7, . .

and

S = é@z 3, (2-46)
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In order to similiarly represent the collisional transfer and
three~-body portions of the Boltzmann equation as linear combinations
of the macroscopic gradients and arraunge the terms properly according
to the density, a density expansion of Yc is required. It is demon~

strated in Appendix E that such an expansion may be written formally

as

Y iﬁfg%) ]+ W%@@”M@) * oo i

P

The vectors égﬁg and ZXz@ are then evaluated by the same
process of direct differentiation and substitution of the equations
of change which was applied to the streaming part of the Bolizmann

equation. The results are 2
2B o R )nn P Ju 3- P % JnT
Qbefgﬂ }:@@ 0»; @h {z Z} By Y= KT é)“a = YmkT KT @rﬂ

2 A 2
s Ll b {op 3 + 2 5 o]
(2-48)
where




Substituting the results (2-41), (2-47), and (2~48), and using the

fact that [é319ﬂ:] is & null operator, the collisional transfer

terms of equation (2-29) may be expressed as the desired linear com~

bination of the macroscopic gradients:

aé} 0 Qnm i)
or'd =N- I
<1 = 0 (2-50)

(= % [aapa LOE - B - 2] o 3F +

The notation

C’@
Z{%
””@
(,:Tvmf

%E = A
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has been introduced in equations (2-51) to indicate a traceless tensor.
These results for the collisional transfer terms are then identi-

o s L. 16 . .

cal to those obtained by Imam-Rahajoe™ . This agreement may be

seen to arise from the retention of only terms up to gquadratic in

the number density and the fact that in the low density limit Ye is

unity.

2.6 The Integral Equation

The Bolizmann equation has now been converted to an integral
equation for the perturbation function ﬁé . By combining the
singly and doubly primed coefficients in equations (2~45) and {(2-51),

the integral equation may be written formally as

J=0(¢) (2-53)

where the inhomogeneity J is

. T ’
el _ L edoy wmj,?c% &Nad}llm

I = = e
nooEd L ’L, (2-54)
k=K+K" L= +L
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ald)= \acdy bR+ BENL (B BV OV F

(2-55;

At this point, the integral equation (2-53) may be simplified
by a demonstration that, for the system under considervation, the term
in the inhomogeneity which is proportional to the density gradient
vanishes identically through terms gquadratic in the densityv. The
non-vanishing result for this terxm obtained by Imam-Rahajoe may be
shown to have arisen from his assumption of an incorrect form for
the first density correction to the singlet equilibrium distribution
function. This in turn is a result of his use of the molecular chaos
assumption (Y=l) in developing the Boltzmann equation.

For a gas of particles which interact through a puvely repulsive

potential, all states lie in the continuum. It is shown in Appendix A

. ‘ , 23 e . . .
that, from the results de Boer”™ , the first density correcrion to the

singlet equilibrium distribution function for such a pas may be

writcen:
2
» ﬁbg : gigoF; Yrg
= 7 '—%:‘9 =b = &
@E@m =l Jas e e & x
{(Z2-56)

e i

| E}

L o =




where

Y T - P
f@@glﬂéz% g%) d %Eff%@ &}/@;Q@)@ kT (2-57)

The quantity é;@(gﬁg} is the quantum mechanical radial distribution
function, in the binary collision approximatiocn, for a system which

obeys Boltzmann statistics and cannot support bound states. The

R

expression for ‘%@ employed by TImam-Rashajoe corresponds to the
first term of a Sonine polynomial expansion of (2-56). Expansion
coefficients for the higher terms are non-zero, however.

In the proof that N = 0, occasional use is made of the result
of de Boer for the second virial coeificient in terms of the radial

distribution function:

B==- %jﬁf { %@@?gr) = ﬁ} (2-58)

With the definition of N in equations (2~45), (2~51), and (2-54)

‘@;‘; %ﬁé%—g)%k\\% {ZBQ@ - %Wa?é@ - 2’?‘@}

(2-59)
. | S i
* %’WS dﬁd%d;@ o@( 0)}1@( 2) :7%/;%;

Using the result of lewma B~10, the second term on the RHS of ecguation

{2-~59% becomes
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(2-60)

After carrying out the frivial delta funection integration and
rearranging slightly, this may be written as

3 (’%\f dedb b e Vimer { é‘? L

m ,

PN \Sl P .
-4 2((7};> Jds € 5 %@@%%Eyé\)} (2-61)

The %% integration may be carried out directly in {2-61). Making
R

use of the definition of %@ » the resuli may be expressed as
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(2-62;

Completing the s dintegration and the indicated differentiations

then gives

%

= (%:%}0@ W/ { 7 g@ + Q@Ga Q@}

=1

e

B ) | ’
n* {%} %Qﬁﬁ!{ g@ dr {g@ (rzr) "”i} (2763,

I A T S N P LU R
Finally, substitution of the result (2-63) into egqusation (2-59)

and use of the defining equation (2-58) for the second virial coefficient

completes the proof that N = 0.



CHAPTER LIT
SOLUTLON OF THE INTEGRAL EQUATION
The perturbation function defined in the preceding chapter may
be written as an expansion in powers of the number density. The
Boltzmann equation is then separable on the basis of the density and

may be solved independently for each order.

3.1 Density Separation

We begin by introducing a formal density expansion of the

perturbation:

¢(7é) %E% @g(z@) + @(}é) T | (3-1)

Then, using the density expansion of Ypband che definition of the
él operator in equation (2-55), K&{@é} may also be written

as an expansion in powers of the density:

AlB) = als(@) + n* A(E)

+n* dfdﬁﬁ& {@(};)% @‘;}b}% {eé ) 'ég(};} Qﬁ e F+ oo



36

where
N A
£ -t /}7 ﬂ I {% s

AB)= Jaedkde 1R (0 Rt LRE R BF

s

(3-3)

The integral operatox ZQX@ may be put into the form of the
usual Boltzmann collision integral by substituting equation (2-24)
into (3~3) and using the result of Hoffman, Mueller, and Curtissls

Ea)
&

@%%{@@*@@$£@m@wﬁgg

(3~4)
~ A . ) ( )
)+ G- G- dfpete
G LG+ G- - dik
where
_g = unit vector in the dirvection of the
scattered particle
G (8 )= differential cross~section (3-5)
2 4 i A
=2 T-K h=xTk

Then combining equations (2-45), (2-54), and (3~2), the lowest order
Boltzmann equation, arising from rerms linear in the number density,

i e

i W



dnl ij%gu ~M, = A, (d) (3-6)

R QEG =e Yoy T
where
1 £
= (-
g@ - L 2 ts ==y %1e

The inhomogeneity in equation (3-~6) involves only terms from the
streaming portion of the Boltzmann equation. With auxiliary conditions
which will be discussed later, the first order equation is thus the
ordinary Boltzmano equation for a simple gas. This problem has been

, ‘ .19 L. e o e
solved by Chapman and Cowling ™~ with an approximate matrix inversion
o , . . 24 e o
technique and by Hirschfelder and Curtiss™ with a variational method.
Their solutions for the perturbation function Qﬁ; are Ildentical

and may be written in terms of the Sonine polynomials as
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(3-8)

@

A=Awl, B=8m YW
where, to lowest order,
— e ;'2.5 ﬂ Va 2 z))w’ ol
Q; =738 {2»@1 (@$ 5; (W*)
/2 ,

(3-9)

4 ) o
4 =7(Q")

(2,2)
An expression for the gifizm

is given in Appendix F.

integral for quantum systems

The second order Boltzmann equation may now be written in terms

of the known solution to the first order equation:

j: zﬁ@(@} {3~10)
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¢ L (b P) {}’Lﬁ’ -5 By

7
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LE-WHB+ET S+ 5T T/,
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Here L, and M,

[ B DA U S S RPN
have been adjusited to make L.

traceless,



£
<

3.2 Solubility of the Second Order Eguation

The second order Boltzmann equation is an inhomogenous integral
equation. Accordingly, the condition for its solubiliky is that the
inhomogeneity Jl be orthogonal to the solutions of

A, (8) =0 (5-12)

¥ \
where Ll@ is the adjoint of the ﬁﬁk@ operator. The

solutions teo the homogenous adjoint equation are the five summational

h ! P-4 ;
invariants: 1, El , and Pj > Thus, to show that the second order

Rl

equation is scoluble, it is necessary to prove that

) (<) I}

df,gﬁv“?jggw =laen " =

<

(3-13)

éb‘::/?z?g

where

0 (’2‘3 @33) . 2
(7[/ = { %L’ = E %ﬁ/ = gﬂj (3-14)

Since the tensors K. | ; and M.  are functions of only ?j 5
=1 b =1
an integration over the angles of ?L in the orth
produce only isoi tensors. Th e




A
s

order tensors and the only second ovder isctropic tensor U  is not

traceless. The second order temsor L., 1is traceless, however. Thus,
the ovthogonality conditions (3~13) redute to

JPPK = VdFM = {4P M Pz’; ()

b =g =) ¢ 0 =t 0 Y ' (3~15)

The remainder of this section is devoted to proofs that the conditions

(3~15) are satisfied.

3.2a Orthogonality condition on Ege

O

[
|

{
=4
4

(3~15%3

Proof:

With a straightforward integration of part of the first term
and an integration by parts in the other, a change of vardiables in

the second and third terms, and some rearrangement, the LHS becomes
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e acdpartp CEPLDL G 3 (P fep S+

B 1
KT A{B "%” T %}?% = § 60 uwg rw (‘3”17)
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| term

The P-integraticn may be performed directly in the second

of (3~16) to give
Y y\2 wﬁvﬁmr W%EJ}% Q
3 {ﬁj div“d}f ﬁ? T P Iy (3-19)

20 g 6™ P-4 0]

The second integral in (3-19) vanishes oun substitiution of lemmas B-5

With lemma (B~9) and the definition of the vadial distri-

and B-11.
bution function, the first integral vyields

(3~20)

L 17 — 9-
U Tar dgg@@?

Lyl

Then using an equivalent definition of the second virial coefficient,

namely
(3-21)

a_
)

5 L i) I
B=3€T dr gfrie) -y



A

the first two terms in {(3-16) add to zers.
Much of the proof that the final term vanishes is dependent
upon symmetry relations satisfied by the functions and the operator

in the integrand. Considering their definitions, we have the foilow-

ing:
“y A Y
ﬂg(ﬂ izv P M@@( ;D #] B é@(ﬂ}
L T A - N
&‘ . A o A ay
s s . =
MR 7?@( ) b-h ?%ZW
2 A R
R i=s A g K1
(3~22)
F<@r;g%;?@> = F(“‘"ﬂ‘%?%@) |
@2(&%\) = @z (%X f‘*@
Since g;ég must be mnahaﬁged b? an inversion of the coordinate

system or a particle interchange, it is
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“5’%5@@@(%&%6}: {ﬁ@(i) * ﬂ@@z\)}% }j O%?g j‘i ue(@"\n %@& ;\B N ;@(N';D u@(i%
T 3 {’ﬁ\x ) (3-24)
45 el dpdP (3P-P) ‘{@ﬁ VA zﬂf Aldbar @Z@b F

The first integral vanishes on completion of the %Q lntegration with
lemma B~6. The second changes sign when the direction of the P-integ-
gration is reversed and must, therefore, be zerc. The same consideration
reduces the last integral to

(M

A

N

4 larap pAA AR L B R TP

TR
g (;

& =
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where

1 (hsP) i‘ﬁﬁ’xgdg‘z B, %’&j&@ m%ﬂ (3-26)

The proof of (3-15') is then reduced to showing that the function
I {#?@; P) is identically zero. Using an equivalent definition

of the @2, operator:

Exs
G

1
2

6 =7 |dasinlbnd € - € ‘

1o

(3-27)
: ! ) P r)
(k)= (zm)  Jdr cos [Ker') (¥
and the Taylor series expansion for the exponentials, jj @”@3 P/)

becomes:




i)

(3-28)
L N \
/ 1 [ e n F 3
F Jocaktt im0 Jop Yot b-Bu Fic)-Sic )
Finally, by shifting the origin of the ;? integration by aﬁig

in the first integral, it precisely cancels the second and the result

follows.

3.2b First Orthogonality Condition on ﬁ@g

(3-15")

Proof:

Integrating the third term by parts, the LHS becomes
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The first integral in (3~29) is zero by lemma B-1. The second vanishes
as a result of the orthogonality condition for Sonine polynomials.

With lemma B~6, the third integral reduces to

B . 2 » o @} \.‘
5,3%’5-{; dfaf}%dﬁdf “@({}@%)%;{}bg){ ) F ”%@%5;@3 w} (3-30)

The %? integration can then be done with the aid of lemmas B-5

and B~L1 and the result follows divectly.

3.2c Second Orthogenality Condition on 7?@&

>3

L]

P PM =0

(3-157711)
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With an integration by parts in che third term, the LHS is
R
" oG -
4 Ao & .
m;s%n-s‘) e .
esmif)ee)
F

¥ z 2‘% ’Wﬁ 4 ‘
w - jfﬂKT{B*ST@W ST dT} ﬁWW 2-W)€ " ¢-3n

The first integral may be evaluated by use of lemma B-Z. The second
may be carried out directly. Then performing the P integration in

the third, (3~31) becomes




o

PN

L
=
)

@ﬂ@w

}é T ‘%"ZWVT%D%T“’T

&

S y\3 i w‘i/ KT BT
-2 dwwé@}? " P

B,%M

+2d*B
LT

(3~32)

2
S 3 . % KT |
. Z CA;: & d . QD i @/m ZSF,W ;QWG
BkT L h vdZdg P € o of “JY Y
With lemma B~9 and the definition of the radial distribution

function, the third term in (3~32) viglds:

o
)

i o
o Gv“ VQQAM
3 M dy g%(fgp> £y

The integral in the fourth term is identical to

has already been shown to be zero. The J%

carried out in the fifth term with

lemmags B~7 and

(3-33)

the one in (3-30) and

integration can be

B-12 to give




(3-34)

By using Green's theorem and the Schrodinger equation, this may be

shown to reduce to

2 % - ﬁ/m KT

30T dgdlb@ e Fj P %ﬁ %’L’% (3-35)

With the definition (3~21) of the second virisl coefficient and the

definition (3-18) of the éie integral, (3-35) becomes

(3-36)

k“r{gé + E"dCW?’TdB v2T @J B

Combining the results of (3-32), (3-33), and (3~36), the LHS of

equation (3-15''") is
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P

ZmkT{ B =356 + k7 &@?v, {%@(:;;\f) £ & (3-37)

which is zero from the definition of the second virial coefficient in

equation {3-21).

3.3 Formal Solution and Auxilidry Conditions

A sgpecial solution to the second ovder Bolizmann equation exists
in the form of & linear combination of the macroscopic gradients. This
solution can be made general by adding an arbitrary solution to the

homogenous equation
Adld)=0

The most general arbitrary solution of the howmogencus equation is &
linear combination of the five summational invariants. Consequently,
a general solution to the gecond order Boltzmann equation may be
written formally as:

JnT 8 d - d
SN ) WAL S 0 I S R 9,y
¢; - ég dr, By 9 Qﬁ Jr, B

&




= w9 Y
where El is & traceless tensor aad O p and %%

1=

To uniquely fix the constants, we employ the three auxiliary
conditions (2-30). These require that the definitions of the number
density, stream velocity, and energy density hold for both the equi~
librium and the perturbed distributions. The appropriate definitions

_ 16
are

(3~40)

=



L
g

in order to use the auxiliary sondition on the energy density,
the pair distribution [unciion must ifirsi be expressed in ter
singlets through use of the definition (2~17). Before the definition
may be used, however, it must be localized 8t 7. Retaining onl
terms at most linear din the gradients and remembering that Y has

consistently been replaced by its eguilibrium value, the res

P

f(;:;;?f} W%(r;%f} @?rwdrmd’%@i%m gzﬁﬁ%ﬁ% %H‘? X

(3-41)

b+ Fie e -3 ) +

Since all functions are now evaluated at Lo this dependsnce has

been suppressed in the notation.
The auxiliary conditions (2-30) may now be written out explicitly,

again retaining only terme up to Linear iu the gradients:



(3~42)

jdm’ff@(;%) Plh) =

§2)
&

£

- mjd%?“ é}‘%@ 513‘32, Y; (&f;%» P ?jf @ﬁyfq@d _ﬁfm@q}%@ d}#g@

€

b

[+ gipl + f

SIS

el
3

NEL

It

v):
=4

* g@(‘}? 3‘;} (ru@@

§

A
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Carrying out the usual density expansions in {3-42) and retaining only

terms of zero order in the density, we obiain

b By = 0

A (3~43)

dﬂé‘;@“ n@(}%\} @@%3 = ()

SR LW dg) =0

These are the three auxiliary conditions required in the solution
of the first order Boltzmann equation for g@

Retaining only verms of first order in the deunsity in equations
(3~42) produces the auxiliary conditions on gi for the
solution of the second order Boltzmann equation. These conditionsg are
expressed in terms of Qé} » which is known from the soluzion

to the first order equation, and are




by

Jatmdw - - [ lnde

(3~44)

=1 jz&%ﬁ d}?zdfx\@(*>j‘gizg@drz@&%@@{?m &2?(!@‘53,})%\%%}&%2&

A

St lde - de)

§

The general solution for the perturbation funciion §Z§ given
in equation (3-39) involves three tensors éia B., and CT’ which are

vector functions of onlykﬂln Consequently, in analogy to the treatment

of the first order equation, these tensors may be expressed as



B=8BwyWy (3-45)

The five constants, g s g , and M , may then be taken

to be zero provided that ézz and (z satisfy the following

¢

auxiliary conditions:

§ C, o )E\@ W) =

R

j;ai\,&!; @W};&(M) Wﬂz = wj\dwg W @«’ W)%;( W)

(3~46)

Yaww Cousy F o =

0 U@

These follow directly from equations {3-44) and (3-43) and & consider-

ation of the tensor properties of the various integrals. Use has also
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been made of the rvesult from the solution of the first order equation
that (@ ig zevo. Because it 1s traceless, no further condition

is known from the approximate

on Ei results. The funciion é&

solution to the first order equation given in (3-9).

3.4 Solution of the Second Order Equation

With the rssults of the preceding section, the problem of solving
the second order Boltzmann equation (3~10) is reduced to solving three

inhomogeneous integral eguations:

K = A.(4)

Le - &gé éﬂ\}

(3-47)

M = A.(c)

subject to the conditions {3-46). These may be converted to three

equivalent scalar equations:

ygnakgaiigéik@(k%6é§b

o (3-48)

< N
ﬁewng E%Eo - A@ (M’"w&z ‘:@‘;}

43 &



Following the usual treatment of the first order equation, we
represent {;i o, <f£% , and (%5 as a finite linear

combinations of Sonine polynomials:

(3~49)

It is then convenient to introduce the following notation:
()

K, = jd;% Su ) WK

=3 g

«) 6 ¥
L = j& Sau ) WW:L,

(3-50)

(<)
M= [4 S, o9 M,
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and

By= [ o)) &i%‘);e(w ;i(wg W

oS0+, S, 004, S W, S
j\dﬁ?d xd%@?’(@)) ESM a}f %Wz)m%f‘ (3-51)

{3

D Sy S - Wiy S oWy, S,

A &ha%dﬁ@ @>§zmggm »%W%{W&H

S0+ §,,0-5, -5}

With these, the three integral equations (3-48) may be written as

three sets of algebraic equations:



[y
]

@ e o
La = Z 4@3 Aij £=0)lyeey¥=i (3-52)

J=0
DI
IRVARETEY
J=0

Since the five summational invariants 1, Ei , and ?i are

eigenfunctions of the élg operator with zero eigenvalues,
" "
= A, — . (3-53)
Alo A@O - A(f[; - O

The matrices 4£§ and zﬁiwv are therefore singular and

d:j@
cannot be inverted. A unique solution can still be secured, however,
by requiring the auxiliary conditions in equations (3-46).

Upon substitution of the Sonine polynomial expansion in (3~49),

the first auxiliary condition leads direectly to the requirement

Cu@ = @ (3-54)



With the result from the solution of the first order equation for
62; and lemmas B~2 and B~3, the second auxiliary condition reduces

o

5 ;@';/{ «zgz»y“
o= (50 (0™ €,

(3-55)
The third auxiliary condition then is
?f“‘?ﬂ Z 3
c v W SW
H 2
E g 1AW W e . (W5 = 0 (3-56)
J=0 2
Using the identity
L (3 &jp«g}
==
8 = 57"
12 A W, (3-57)
and the orthogonality and normalization relations of the Sonine
polynomials, the integration may be performed to give
C.=C (3-58)
o 0t

With equation (3-54), the third auxiliary condition is finally
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C,= 0 (3-59)

The three auxiliary conditions on the expansion coefficients can
now be used to replace the three sets of algebraic equations (3~52)

with

V=1

{€)
D 1P P

J=1

(3-60)

The matrices represented by the ékii s £Q¥g’ , and
08
éﬁ&é; in (3-60) are now non-singular and may be inverted by the

approximate matrix inversion technique discussed by Chapman and

.1 . . ;
Cowling 9@ In the simplest approximation,
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(3-61)

C R Syt

The problem of solving the second order Boltzmann equation is now

reduced to the evaluation of the three matrix elements onu s

§ i 4)]
A@@ , and &22 and the three inhomogeneities Kn

Lafu» ., and M ‘e

b

3.5 Evaluation of the Matrix Elements

The matrix elements may be expressed in terms of the well-known

bracket integrals:
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(3-62)

W 1 T A® (2)
Azz - W{Sq/ (W;)z)§ S”/x (M%l}}

b &

Results for the bracket integrals have been tabulated by Chapman and

Cowling19¢ Substituting their results into (3~62) gives

' (2,2)
A, =-4

(3-63)

:2 (2,2)
p@@ﬁw% s

y {2,2)

A, =—-2L2

— (242) ) . o
The ﬁ§j2L integrals, as usual, refer to the quantum mechanical

quantities.

3.6 Evaluation of the Inhomogeneities

From the results of section 3.4, it is elear that the following
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integrals of the inhomogeneities are necessary for the evaluation of

the expansion coefficients:

K"= | (E-wu-K

1% = j\ay

§2)

M, ja;%5 IW+EWOIM

(3~64)

e
o
-

Each of the three integrals is now evaluated separately.

o)
3.6a FEvaluation of &(a

Because of its length, it is convendent to divide the caleulation

into four parts
K e | K K°$€» (3"‘65)
b Z a

where
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(1,8)

K = S uK (2w

» Yy (3~66)
K(u,s)g (%KT) 24{ B+ jB’}% jgj B T& g}ﬁo

H

""#5@«4}2&# (P E@ 5{ ERd W“’}’jﬁb @f ¥
v PR - b9 61}

Qﬂ.




i K f150)

[

By straightforward integration and the use of lemmas B~2 and B-3,

(X)) KT Yy | — dE.
KD = (?f;ﬁ) {@ +zT ‘gﬁ%} (3-67)

Imam-Rahaj oel6 has evaluated integrals of this type. The compu~
tation is based upon integral properties of the functions F«E’;%ﬁb@\)
(y:;_? 7#6) and the assumed short range character of the

intermolecular potential. In our notation, the result is -

K“"” KT ’{{!SB 5@ + %T | L (368)



where

Q= %#—‘j (emkT) ()" ("?;\.?)3 jd_ dh, @“’}D kT Y:H

We first change to center—of-mass and relative motion coordinates
and remove terms which have integrands that are odd in P. Then, with

lemma B-6,
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5{@@@)*&@}?% S (3-70)

L (meTYZ"sz;? dbdF {f@(ﬁ»f@(l@eﬁiﬁgaﬁ ’

The second term vanishes by lemma B~8. With the asymptotic form

of F(r;%, 7&0) from Hoffman, Mueller, and Curtis 15

Fr 8p-p) +5 §G-h) o) - 5505 W@Z} G-

where

(3-72)
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the r-integration in the first term yields

A

Jal bl BRSG-R-RSGRY o

The ‘P" —-integration can then be done trivially and, with some
rearrangement involving the symmetry properties (3~22) of A@ (k) 5
the first term in (3-70) becomes

A

& mir) dkdpdP p o (6) 7?;(5%)?9@(}%%;?@(%@%%2&

(3-74)
{ 2 A A
A L\VP: - b/
‘ao{\%g)f ¢ ﬁ }‘g K
Using the explicit result for é}@ (%&) from the solution to the

first order Boltzmann equation and again removing terms which are odd

in P, (3-74) reduces to
‘ i -
-gmer () () [k ayy oo fric-ul:

‘ - 2, . fm o
s{% 4 E{Eﬁﬁg wggi%?%gg} e
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where we have introduced

[

Y, = ‘%(mKT)wnjdfﬁ P£ (M de( }%‘) (3-76)

{
]
-

A N
When the explicit forms for Aﬁ@ and %; are substituted, the
integrals IZ and 122 can be evaluated by a straightforward,

though lengthy, application of the properties of Fourier integrals.

The results are:
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D =7{2T +sT" + 4T+ T}y

+5§2T 42T+ £TH]
‘%‘{ZT + ST:NW%" Lﬂ’mm +W«33}gzg
| | (3~77)
4 Z{Tﬁ + L@“TH €ﬂ°»+ ‘éTﬂm‘;ﬁ” LH’” {3) Tl (&&)}yzgg
MZ{T} +2T"% m} ¥y + {Z’P«WM?U
(3-78)
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By substituting equations (3-77) and performing the tensor operations,

(3~75) becomes:

(%) () [ag arorte) {11 81 1]

S y°[8T #1r T s 18T ”7?@3)]} ¥

(3-79)

T {) (2 (3) q ()
228 [4T 40T T2y ]
The three trivial angle integrations may then be carried out to yield
¢
(=)
’Sw(KT) ( W) jgfy@ (y) «
o

LY [8T 10T 1aT Oy 4

(3-80)

"‘”ZW[%T F 10T 9T, 4T, T(ﬂ}’

where the definition of the gg " moment of the cross-section



ul

Q%) = mjd)c stn X {ﬁw@osﬁx}@“@w) (3-81)

@

and the change of variables

cos X = g”g (3-82)

have been introduced.

Finally

(443 5 (KT )
K™= Zm) 7, -

_ﬁl = 8Rw§2)+ 7 R“m N hBR(%z) +77 R4333)+8R(093)

9 (2,3 (3,3) (%,3)
+20R™ +18R" 4+ 8R™ 4+ 2R

where

{(4aV) =} ¢ .
g« %“%(KT}(%}zéﬁ%gi} g\@%’ Qég%'@‘?) yszTw)

Q..

>

(3-84)
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{a,v)
The §€ integrals may be regarded as a generalization
(2,v) (242)
of the usual integrals (reduced by @gﬁzm ) in
2
= ﬂ
which the € has been replaced by the function @T 3)

¥ J
The factor @ A is of the form ‘%@ @f) s, while T y)

is related to gg@ . The result {3-83) agrees with that of
Imam-Rahajoe if only the first term is regjlnéd of an expansion of

: ¢

ara(g) in the Sonine polynomials, éi 2 ., and proper account
is taken of the fact that the density separation was made much later

in his development.
(154
iv. }<ﬁ

Changing to center-of-mass and relative motion coordinates and
removing terms which have integrands that are odd in P with relations

(3-22), this may be written:

A

e bl LR LA ART O JUF

+ (2mkTY 2 drdfdbdP 7 (b n@(Z‘} {‘% ?{%}r {3 P-b}-

{3-85)




Then substituting a Taylor series vepresentabion for the %

operator,

z2)h dP d ”3é@deWo g d
0~-#{k (1 4Pd¥ dv.

. v i~@%gﬁ
Z de "3 TEND de dr drcdbapdpt L ey

and integrating by parts on %? s, the fivst term vanishes. With

the same considerations, the second term becomes finally

KG”?W B ig (KT)M %{%> e

Further reduction of this term ncw requires sn explicit analytic form
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Combining all contributions,

where the quantities 7E4 and 67{129;) are given by (3-~83) and
(3-88), respectively.

(o)
3.6b Evaluation of L»o

Again it is convenient to divide the calculation into four parts:

4 .
(0) (0,¢)
Lo o Z Lo (3-90)
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(3~91)

Each term may then be counsidered separately.

(X))
i.

— [}

With an integration by parts and the use of lemma B-2, this

yields the contribution
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(040) 5
L ey = § €o (3~92)

(042)

., |
el

Imam—Rahajoel6 has evaluated terms of this form. The calculation
involves directly the integral properties of F:Yl?)?i#%> and
(}(!?)?v}%> and the definitions (2~58) and (3-21) of the

second virial coefficient. In our notation,

(o,z)“S{ Q-B+IT4B +i7 dd:%*

] (3-93)

3 E
E - €0 4 ,_,,T d b
(0,30

p 1 2 E
b

After changing to center-of-mass and relative motion coordinates

and removing terms from the integrand which are odd in P, the r and

r% integrations may be done with relation (3-73) to yield:



s it -0l

(3~94)

Substituting the explicit result for B, from the solution to the

first order equation and again removiag terms odd in P,

2 mlkr)’ (! z’zi)@iﬁ

L=
S
[
e
2
()
Py
&
8
4
Sz
%
17
o
X3

(3-95)
whe:_re

D;E’Zjd? ‘7;;@(}96‘) o@i%ﬁ (3-96)

As in the treatment of 4]21 and Qzﬁ the D3 integral may then be written

in terms of the T"{gﬁ} integrals:
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(3-97)

With the results of equations (3~77) and (3-97), the tensor
operation and the three trivial angle integrations can be carried

out to give

SKT(‘%)( «zm) fdéf y Qm@)!) T +2T,,m o

(3-98)

The result is then

(0y2) (3-99)
L~ =-54%,

!

where

(o,z) ta,z)

#,= *R

(2,2)
+2K
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}{@ﬁ?@@

and the integrals have been defined in equation (3-84).
15

iv.

- t

Changing to center-of~mass and relative motion coordinates, terms
in the integrand which are odd in P may be removed to give:
Lol drp BBt as
~(8mkT)" agmi;;dej% , 0) i P@{ B(h+Bky @Zy@?

(3~101)
. A A @ »
—(2mkT) ng&d#@g@ g%@%g(%)hgg ﬁ%%{@iﬁ*g@@%g} @2? F
The first term vanishes on substitution of the Taylor series
for é%z and integration by parts. Similar treatment of the

second term then gives the result:

fo, )

L =-5Z (10
where

Kl yAS (5mw)”jdg@a&d.%@ %5;;(};;};(2‘; ;?%; F Bh:

<§}@ 7 @Qi? g »
f”guéﬁ 7%? %}? ‘%; (3-103)
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To further reduce the term X(ye) , an explicit expression for

?e is required.

Finally, combining all contributions,

(3~104)
26 T T o7 “’“7?;“2”(%)
(2)
3.6c Evaluation of Mq
We divide the calculation into three parts:
Mm i M (248)
N ’ (3-105)

(=1

‘Z,“ 5 5 2 4 &}}
M' Eydh Mcn,i){'gh'i -*zw'
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where A

A
2_. 9T

""ZWE*’aT ZJ%;

+5W g

&us)

,_q,_,.{_,___w }{B"“’ i i% g fiﬁa} ; (3-106)

n +2)

The three contributions may now be evaluated individually.

i M‘,W)

After an integration by parts, the use of lemmas B~1, B~2, and

B-3 leads directly to

M= {se-e}- 5T {54 - d&

(3-107)
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(242)
IR )

By the orthogonality condition of the Sonine polynomials, this

term gives no contribution.

{2,2)
M =0

(3-108)
(2,3)
iii. %@u
Imam-Rahajoel6 has evaluated integrals of this form. In our
notation,
(253) | 4B ZJR‘B }
(3-109)

Finally, combining all three terms,

2 2 % ’B
M-t foTE T B 4277 48]

4

(3-110)
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This completes the formal solution of the second ofder Boltzmana
equation. With this solution for the perturbation function 96 ’
the approximate non-equilibrium singlet distribution function has now

been obtained.



CHAPTER IV

THE TRANSPORT PHENOMENA

The non-equilibrium state of a single component gas is specified
by the density, stream velocity, and temperature as functions of
position. The time development of the three macroscopic variables
is governed by the equations of change (2~31), which involve explicitly
the momentum and energy fluxes. Physically, this transport of momentum
and energy takes place in two distinct ways: a purely kinetic mechan-
ism due to the motion of individual molecules, and a collisional transfer
mechanism arising from the transfer of momentum and energy from one
molecule to another by interaction through the intermolecular potential.
For a system not too far displaged from equilibrium, the fluxes are
linearly related to the macroscopic gradients. The proportionality

constants are then the transport coefficients.

4.1 The Energy Flux Vector

In the near equilibrium approximation, the energy flux vector

is given by

(4-1)

- 89 -~
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where }\ is the coefficient of thermal conductivity. The
energy flux vector and the coefficient of thermal conductivity may be

. 16
conveniently written as the sum of three contributions

%(r‘;’*g) = fr +%m +gm_
A;—%/\I+AE+)«E (4-2)

where explicit note has been taken that the energy flux vector is to
be localized at r; and is taken to be a functional of singlet distribu-

tion functions.
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In the classical development, it is possible to classify the
various contributions to the heat flux vector as being of eithef a
kinetic or a potential origin. In the quantum case, however, such
a classification ~-— while providing useful terminology ~~- is not
strictly correct., This situation results directly from the non~
commutation of the coordinate and momentum operators.

In the preceding chapter, an approximate non-equilibrium singlet

distribution function of the form

40+

was obtained. This expansion may now be used to evaluate the energy
flux vector. To be consistent with the restrictions on our solution
for 5; , equations (4-2) must be written in terms of functions
localized at ESP As before, this is done by making appropriate Taylor
series expansions and retaining only terms at most linear in the
gradients. Careful consideration of equations (4~2) and our expansion
for J; shows that the energy flux vector is determined only
through terms of first order in the number density. Hence, terms
quadratic and higher in n must be consistently discarded. The three
contributions to the thermal conductivity are now considered separately.
Finally, the results are written as a virial expansion and compared

with those of Imam—Rahajoe16°
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4.1la Evaluation of /%I

With equation (2-26), the first contribution to the energy

flux vector may be expressed in terms of the perturbation function

7/

gx"‘ d#‘ y i £(}’.) + Elg*jd}h Ez,ﬁ f;;(h) ¢(#) (4-3)

The first term is clearly odd in 31 and vanishes. Performing the
usual density expansion in the second term and retaining terms up to

first order in the density,

1 = d)}’Pze a@@ + 2 d}’nﬁ )ﬁ%*’fﬁ (4-4)

With the results of equations (3-8), (3-9), (3-39), and (3~45) and
use of the properties of tensors, it may be seen that only the part

of the perturbation involving the temperature gradient is non-vanishing:



53

f T @

are all functions
of only(the magnitude of El , the first contribution teo the thermal

conductivity is

-5 A
A =2KT (2mk7) 4 Jh B +

(4-6)
A R
"0 ) a
n dt%%% e 5+ﬁ d‘%g ie e
Substituting the result for é?l from the solution to the

first order Boltzmamn equation given in equation (3-8), the
E?g -integration in the first term may be performed to give the

contribution:




>\ _ 375 KmT (@29?@)00

(4-7)

This is the usual low density result for the thermal conductivity.
Similarly, with the results (3-61), (3-63), and (3-89) for CZ .

the second term in (4~6) leads to

1 1 _ dE,
M“’{Bﬂé@aﬁ’é?ﬂ?ﬁﬂg +%ﬁ%%@z>} (4-8)
The final term may then be written

L (mKW b @??@ = (VWKT)BJ@% P%n:

(4-9)

With lemmas B-3 and B-4, the ;?0 ~integration can be carried out

to give
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i
ém)\@j{jﬂ” 60 + U@€ “‘“”5 Q} (4~10)

Summing the three terms finally yields

h=h +nh {B-3Q + & + A+

(4~11)
R 2l €,
+(é(l & o €z+5€ +TdT>}

4.1b Evaluation of )KIﬁ

The definition in {2-17) of the quantity Y(Qo rzﬂb %2}

may be used to express é;if in terms of singlet distribution

functions:
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The RHS wust now be expressed in rerms of functions evaluated at
r , by means of Taylor series expansions. We have consistently
retained only terms up to first order in the gradients and have
replaced Y/ by its equilibrium value. With these considerations,
the localization and density expansion of equation (4~12) gives

0

$o =i Jdu |dpdpdedbdhadrdy, £ 3 v (pop)
[]

>
>

LN B+ disd

where the form (2~26) has been employed to express the non~equilibrium
singlet distribution functions in terms of the equilibrium functions.
Changing to center~of-mass and relative motion coordinates and
{2y
substituting the explicit expression (2-14) for the &L opera-

tor, the r_, R, Q?; s ;? s, M, and T integrations

may be carrvied out trivially to yield

i %
fe = |dedp 2P ¥ 5 ve-P Yoy Vi »

o bl d b B}

§

(4~14)




g7

the integrana is th

.

suffdicient to show that

gradient part of the

s

-

perturbation 1s nen~vanishing. Then with the definition (4-2) and

the resuley (3-9) for &éi 5

£
i
[
[
orer

The P integraction may then be carried out directly. After some

rearrangement, the vesult is

T I8KT \h

where we have ianty
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The firet term in (4-18)

" I o N
enn ¥, 1g th

ritten in terme of the gquantum mechanmical vadizi distei-

&

may theh be w

butisn Ffunction:

(4-18)
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h.le Evaluation of Jﬁﬁﬁg

As in the trestment of ggﬁj , equations (2-17) and (2-26)
must first be used to represent ;; in terms of equilibrium
singlet distribution funciions and the perturbation §2§ . Then,

localizing atvgl with Taylor series expansions, performing the density
expansion, and retaining only terms up to first order in the density

and the gradients:

Al

mﬁ%% d;? 0%}%55 iﬁ}é déﬂ@iﬁga{*’% @d {"3“3}7}3 eofgg%iv%@?x(qﬂzo)

Sekes]di - a)

Changing to center~of~mass and relative motion coordinates and
{2y

substituting the explicit form of the &§T:lgg operator, the
trivial !fl s, & s Ry, and £ integrations may be carried

out to give




wheve the definition {(2-23% of

the symmetry relations (3

change sign when the directions of the ;? s e , and r
integrations are reversed; hence, the integral must vanish. Performing

the %? integration in the second term with lemma B-5,

T

(4-22)

=

With the solution (3-9) for ;@; s it &

tensor properties that only the term in the temperature gradient is
non-vanishing. Then, with the definition (4-2), the third contvibution

to the thermal conductivity is

g
o

A A 2
A = “"“’nk@ - ‘JIN i &P [[‘ 5‘?’3@@ ??\ S«B» »% @}é
= Ygmiers JdedpdP 3 RV (R) D, (i)

EA

(4-23}

>
&W»WM
e\"kﬂ% A
e
Kﬂ N
@
%
5%@
mm%“"
_
=g
:’2‘ Gm‘
S
a
o I
(e
o ¢
L
-

The P integration may be carried out directly. After some rearrang

-1 “ Vi B ST
the result may be wr

distribution function:



1ol

%m - LK 4T dr Wgé@ (rsr) (4-24)

By substituting the Schrodinger equation and introducing the definitions

of éZB and the second virial coefficient,

xmﬁwé’m@ %T&B +27T iaTB;%Q +Td€ (r2o)

4.1d Virial Expansion of the Thermal Conductivity

It is convenient to write the thermal conductivity as a densiiy

expansion of the form:
= B o (4-26)
>\ ;x® D + n A il weo

dmit given in equation {4~7).

£

i

here ;% he usual low density I

From the resulis of the preceding seciions,
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']

ESA is then independent of the dengity and is veferred to as the
second thermal conductivity wvirial coefficient.
. . . ' .16 E%
A comparison with the results of Imam-Rahajoe for W can
A
now be made. B and its derivatives occur identically in both tveat-
ments. Aside from slight differences in definitions, the same is

true for both the @@Z and Crza terms. Terms involving the

é;f integrals do not agree, however., This may be shown to

N
%

directly from Imam-Rahajoe's use of a form for %E which cor-
‘e

responds to only the first term of an expansion of de Boer's

expression (2-56) in Sonine polynomials of order one-~half.

The three-body term 7%3 agrees with the corresponding gua

in the work of Imam-Rshajoe only if the approximation discuss
section (3.6a~iii) is used,

ferent forms assumed for

o




Jot
)
£k

[

e's trestment due TO

et

(9 . , g .

¢ tle) , does not occur in Imam-Rahajo
4

use of molecular chaos in the development of an expression for the

pair distribution function.

4.2 The Pressure Tensor

For a gas which is not too far displaced from equilibrium, the

pressure tensor may be written:

P%Pg"z?]g”}@‘g %“@! (4-28)

i

where Fj ) 77 , and Q@ are the hydrostatic pressure,
coefficient of shear viscosity, and coefficient of bulk viscosity,

respectively. S is the rate of shear tensor and is dafined by

S:ﬁi Ly iue’aﬁ ”%QLM\NU (429

== ‘Z €Q£% - él}‘“ B %fﬁ% af =

A formulation of the pressure tensor which is appropriate for
the quantum development may be conveniently expressed as the sum of

e 16
two contributions” ¢
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(4~30)

where it has been explicitly indicated that the pressure tensor must
be localized at 1, and is taken to be a functional of singlet distxi~
bution functions. Paralleling the treatment of the heat flux vector,

we also define

(4~31)



then

(4~32)

7=+ %
=3, + ¥,

The solution of the first and second order Boltzmann equations
allows the hydrostatic pressure and the coefficient of bulk viscosity
to be evaluated through terms second order in the number density.

The coefficient of shear viscosity is determined only to order n ,

however. Consequently, it is convenient to separate the contributions

of P and P to P R 7? , or M prior to

=T =T

performing the density separation.

It is necessary then to write the perturbation function as

J

— @ Feu (4-33)

a

=

<.
il
i
=
=
o |t
EE
=~
e
3y,
=
=
o
-

&

where Q s J’B s and @ are functiong of the magnitude

of _E{ and have density expansiong given by:
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BN%‘B; + 5+ (4-34)
@N @ﬂ + m@z +...

The coefficients @@ , @ R ﬁg s “ﬁ , and @0 are

known from the solutions to the first and second order Boltzmann
equations.

The two contributions to the pressure tensor are now evaluated
separately. Finally, Fj s ?7 , and 3%? are expressed as

. . . N
virial expansions and compared with the results of Imam-Rahajoe 6

4.2a FEvaluation of Eg 5 Z%x , and égz

With the definition of (2-26), the first contribution to the
pressure tensor may be expressed in terms of the equilibrium singlet

distribution function:

1

B=n|4tPLd +uldpef

0

Using relation (4~33) for the perturbation function and the fact
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‘i% Foy
that %@ Al [Z/ Sre

tuncbions only of the magnitude of P,
¢ A
the terms in the temperature

o

radient must vanish to give

P-s|dh Pt U - g Ulu)ap R .0

(4~36)

Q.
1

4

The dantegral

$4.1.8pPpPP

" (4-37)
is a fourth order temsor and must be isotropic since =2§§ and %;

are functions only of the magnitude of Eia Every fourth corder isotropic
iinear combination of the tensors . UQ}

and EJ”L[ s, defined by

3

S

i
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o . (4~38)
K “Jf

Hence, the integral (4-37) may be expressed as a linear combination

of orthonormal fourth order tensors in the following way:

44 BPPP =3 f(U-W)-3=V U]

& (4~39)
YLiasU U

== =

ﬂ [
Yl - zs U

The problem of evaluating the integral is then reduced to determining

?JT 5 j; , and j;

the three expansion coefiicients
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From the orthonormality of the thres tensor

ensors chosen, 1t follows
that

ﬁ . | ° 4-40;
3:7;?‘@@3&%&%5“3? > (4-40)

Performing the indicated tensor operations,

j: ﬁﬁj@?‘% %@B PW

(4~41)
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equation (4~36) becomes

- e’

=
1=

&s
)
@@%QQ
3
2
N
B v
S
52
«
e

Finally, with the definition

o

. =1 e

N, =(s0m*kT) j\@[MGGBP
LC e

-

4=310,

I

— =

. o F Ve 9 Z
3r de + U F
oM J TV e
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. and %@ia are now considered individually.

Performing the density expansion and retaining terms up to

quadratic in the number density,

2

F=3m bl Pt + 2= (b

ﬁ?ﬁ‘iﬂ%

PZ (4-45)

The first integral may be carried out directly and the second with

lemma B~Z2 to give

E = ﬂKT{ﬂ +%n€0}

(4-46)
Retaining terms up ©o first order in the number density,
i ;g‘} ' i %
o 2 ,
721 (30%‘3 KT) {ﬁd%ﬂ D@B@P + mjd%ﬂgeﬁ%
& (4-47)

enfhfBR"}




from the solutions to the

&
s

i

[
5
m@@

Using the regults fox
first and second crder Boltzmano equations, the integrals in (4~47)

can be carried out with the aid of lemma B-3 to give

N=7+nN{B-174 -4 4B-10,
-@Lé, €0 T d@ 05 @ (4~48)

+R %;6@/@%

where

N=Ekr[a™7)

(4~49)

is the usual low densiiy sxpression for the coefficient of shear

viscosity.

B,

Performing the density expansion asad discarding terms cubic

and higher in the number density,
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S 2 A
ol P a2 n” Fp p2
= I %, e LA b
éfgi gmjd‘l‘% B@(\\\fﬁ, "jﬁ * 3m(\} Q%“[[/?% %@bu}?
(4~50)
n* K
o (
Im dj% e \J2E

With the solution {(3-61) for - (@B and the orthogonality condition

for the Sonine polynomials, this ilmmediately reduces to

@2& N g@ @D} o

A complete evalustion of (@z would require the solution of
the third order Boltzmann equation. However, the particular integral
(4-51) is uniquely determined by the auxiliary conditions for the
third order Boltzmsann equation. Substituting relations (4~33) and
(4~34) for the perturbation into the thizrd of the auxiliary conditions
(3-42), retaining only terms second order in the density, and making

use of the tensor properties,



Jd%% 7%@@@% i@@ \’/ﬁ} = e mj Cﬁ;/;bb@?yzéi @i%@ dﬁ (ﬂiuudf’z@ %%w)x

(4~52)

Changing to relative motion and center-cf-mass coordinates and

] {2)
substituting the explicit expression (2~14) for the QQ@ opera~
tor into (4-52), the trivial T s jf@ s E@ , and

? integrations may be carried out. After rvemoving terms which

=@

are odd in P from the integrand, the RHS of the auxiliary condition

{4~52) becomes

—m Jdv dpdPdp, Pen: AFA! '{;9( L) @5{?}@} [ teh )

"%“mﬂtﬁ@ o P FE - l
e Sl an b Y L SRSV e Wl
kT e dpdP XTI BY T

e |3 ~4 é o @"7‘@




{.._
E..,.x
[¥1

Witch the expression {3~61) fovx Ny , the P integration can
be carvied out directly in both terms. Then, using the definition

of the quantum mechanical radial distribution function, equation
(4~52) may be written:

5P {f 0 +L 0} = 3mQ

e 4 e

(2)

where

Combining equations (4-51) and (4~54),

W:: o

M. e
g@fﬁ\ @“’“’W%’% A T 2;?‘“ @ﬁg{‘ k@%@%@ (4~56)
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The integral in {(4~56) may be carried out by the same techniques
involved in the evaluation of (4~24). Finally, substituting the

results of (3-63) and (3-110),

2 ! 24°B 3d’
n KT {2,2) »OT&!@ : ﬂ“ & +27 Wk

Y 2@98 3@{8 d€, aﬁzé‘?
%%T +T ST H +4T" I |

(4~57)

It may be noted that, in the treatment of a classical gas, the
suxiliary condition on the energy completely determines the kinetic
contribution to the bulk viscosity, specifically zero. In the quantum
cage, this auxiliary condition is sufficient to completely evaluate

}gz s the guantum snalogue to the kinetic portdion of the classi-
cal bulk viscosity. 7The first of the auxiliary conditions (3-42),
related to the number density, provides an additional condition on (%

which is superiluocus to the evalustion of ;@,

:é—-e
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f
~i

i i)
4.9b Evaluation of {im and @t

v PR )
The definition (Z2-17) of roe 3§ may be used to
o . e PL s Fifad Y -
first express Ff in terms of singlet distribution functions:

=4

?3 i S.§§ gﬁ H ; £ { ggg} ‘, H
=-3 gdﬂjég%ﬁ%fﬁ%é? dhdb ¥ 5 01 Yolesbh) »

©

where we have again replaced }(kr;}%}z) by its equilibrium
value. The RHS must be written in terms of funciions evaluated at
xy by means of Taylor series expansions. The definition (2-26) can
then be used to express the noin~equilibrium singlet distribution

functions in terms of their equilibyvium values. As usual, only terms

linear or less in the gradients are to be retained:
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ol {M”“}E%’fnwﬁf‘%}%ﬁ»%fm;@a@)&; .
et i g + g+

3% bR+ £ 1k [es): évg (P;}

After changing to center~of-mass and relative motion coordinates

=)
and substituting explicitly for the ¢§T2L%} operator, the A4

(4~59)

)

g |, ﬁ? , T , and Eg@ integrations may be carried out

= EVN =g

trivially to give

(4~60)



At this point, the treatment may be simplified by recognizing
that, since no terms higher than quadratic in the number density
were reta%ned in i%i , & density expansion of ji% may be
truncated at the same order of the density. After performing the
density éxpansion, substituting equations (4-33) and (4-34) for the
perturbation, and making use of the tensor properties and the

symmetries developed in equations (3~22), the second contribution to

the pressure tensor becomes:
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Finally,

121
using equatlon (4-31) and remembering that iy and
g%z were evaluated to second order in the number density and ??
to first order, EE 5 ;? , and ,}g may be identified by the
J 18 .
same techniques emploved in the treatment of
are -

The results

"'@
o)
>
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I Ef_ﬁi
The P integration in the expansion (4~62) for %é, may be
carried ocut directly. The @? integration can then be performed

with the aid of lemma B~5 and the result written in terms of the

radial distribution function as

! a g
g =i de v é%? : 9, (4-63)

With the definition (3-21) of the second virial coefficient,

R = mZKT{B@%@}

(4~64)

The ;2 integration can be periormed with the aid of lemma

B-5 to yield:
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H
|
!
Si-
]
i
3
=
&3
]
&
L
2}=
mE—
4
ne=
:
Gy =
e
-

(4-65)

The P integration may then be done directly. After performing the

tensor operation, the result is

o (4~66)
where CE; has been defined in equation (4~17).
iid. Agm

The %’ integration in the first term can be done with Lemma

B-5; the }’ integration in the second follows directly from the

definition (2-22) of the function G and the properties of Fourier

integrals. With this, the second contribution to the bulk viscosity

becomes
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Substituting the result (3-61) for (Ez' » the P integration may

be carried out in both terms. The result may then be written as
{2)
2 2
=0 ! 2d hd (4-68)
B T Y e emmp— prabe 2 -
T L BN T xﬁr L ﬁ@{(mﬁ +n-ag

ed kg ) ¥
o"“j\;ﬁ (A)ﬁvd}w | mm}’ {wﬁd%%ﬁw}

(4-69)

Finally, with vresults (3-63) and (3-110) and the definition (3-21)

of the second virial coefficient,
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2ge 4 D200 nzb” ; Y T G’ZBi Bd B
}QI N Yse Y4 Zl) %{ ;Z} zi“fg

(4~70)
2 €, .z d*
3843748 oy ey

4.2¢c Virial Expansion of Fj . ;7 , and’ éf

Combining equations (4~32), (4~46), and (4~64), weé have the

usual virial expansion for the hydrostatic pressure

(4-71)

P = MKT‘{J + WB}

where B is defined by equation (3-21). Analogous virial expansions

may be written for the coefficients of shear and bulk viscosity:

N= Z&{ﬁ + nBZI +m}
(4-72)

W= nzCM, F e
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With the results of the preceding sections,

B=B-{TR-$T'¢B-10 -

(4~73)
-Le éng +~5-§§5-;€2 + A, *%f%)
-
Co=Q+ o + kT[]
(4~78)

5TG?B 2 Tde 7’3 d3B

These expressions for B’Zf and CW may now be compared
with the resulis of Imaxn»Rahajoelﬁ. In the case of B?; , the
integral Qz and the second virial coefficient and its tempera-
ture derivatives occur identically in both treatments. The two
expressions for BZI differ in regard to the @Fﬁ; integral

by a factor of five, although this is not apparent due to slight

differences in definitions adopted in the two treatments. This dis~
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agreement appears to have resulted from an incorrect normalization

of the fourth order tensor {3 (w = Mlj} ""‘ R g g } in

[1)

Imam-Rahajoe's evaluation of “PK .
integrals do not agree because of the different forms for %; used

in the two treatments. As noted previously, this is ultimately

Terms involving t%? 6;

related to the use of molecular chaos in Imam~Rahajoe's development.
The three-body term 7%2 agrees with the corresponding quantity
in the work of Imam~Rahajoe only if the approximation discussed in
section 3.6a~iii is uiede This also is a consequence of the different
R
forms assumed for £ » The absence of the other three-body
e
term, X(y@) s in the results of Imam~Rghajoe is directly
attributable to his use of the molecular chacs assumption.
In the case of CW , aside from slight differences in

definitions, the integrals Q0 and @’%@ appear identi-

cally in both treatments. The 60 and €

2 integrals and

several of their temperature derivatives occur in the results of
Imam-Rahajoe, while both are sbsent entirely from our expression

(4-74) ., This difference stems in part from the different forms
N

assumed for ; in the two developments and partly from &
e
slight numerical error in Imam~Rahajoe's treatment. Correcting the

A
numerical error and using the form (2-56) for g@ then leads

to a fortuitous cancellation of the € ¢ integrals in C W

In general, there are no three-body contributions to C W
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CHAPTER V

THE RIGID SPHERE MODEL

The formal theory developed in the preceding chapters is appli~
cable only to gases composed of molecules which interact through a
purely repulsive potential. A mathematically convenient example of

such an intermolecular potential is the rigid sphere:

\Pm = o rea
(5-1)

= 0 ¥ >q

Although the rigid sphere model is not physically realistic, its
simplicity has led many authors to use it, particularly in classical

treatments, as a testing ground for transport theories.

5.1 Quantum Two-body Contributions

In the preceding chapter, the transport coefficients were

divided into kinetic contributions: AI . ??IL , and MI ,

and potential or "collisional transfer" contributions: T

)\ and w . It is now convenient to divide
m 2 Wm » m

the contributions to the first transport virial coefficients into

two parts on a different basis. We let the first group consist of
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those terms which involve only two-body dynamics and the second group

be terms which involve some three~body dynamics. Accordingly,

(2) (3)
= +
BA % BA

(5-2)

12) (3)
= +
B?i BW BZ?

- @ (3)
Cu=Cy + C

where

m» < ZR
v =3 {4 -7 T 4R -0 -2

w2 4. ‘qs}
ﬁé; +20€z +!J@€3 “’BTdT’

@%*@+3W%>

4B 4B o
B”"’”B“’“‘T %Tzﬁzw%@&w%

_ €,
7z € - éTd *%6
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By = A, + 0y
@kt ~wa [odB  n-2d*B  2d?B|"
Ce =75 (0 9 {57"&%""57 T

+Q, + %%

(3)
€Y= 0

For the special case of a quantum gas of rigid spheres, the
) {2) f2)
expressions for ESA R Egzy , and (:}g simplify
considerably. Each of the siz~fold integrals involved may be reduced

to a single integral and a sum over the angular momentum quantum

number.

The method of reduction is based upon the partial wave expression:

%y.#} = %ﬁ Z %(ﬁ) E(@@s ¢) R(”y}%) (5-4)
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where
-4 i,
=i (2h+1) "™
(5-5)
#
A
cos ¢ = £°#79
The ;?ﬂ are the usual phase shifts and the I%:g are

those solutions to the radial Schrodinger equation

fopk Rl R =0 e

with the asymptotic form:

R’g — Sin { ;h - ,21'5" + 7[1} (5-7)

p— £

The wave function represented by equation (5-4) is then a solu-

tion to the relative motion Schrodinger equation (2-16) for any
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spherically symmetric potential and has the appropriate asymptotice
form. Each of the seven two~body integrals is now considered indi~
vidually for the special case of rigid spheres. In the following
sections, a bar will be written over symbols to indicate that they

refer to the rigid sphere quantities.

e

5.1a Evaluation of - 63

By substituting the Schrodinger equation and rearranging, the

definition (3-18) of é;a may be rewritten as

(5-8)

‘%?2(%)3 . d}% LP g} yj*e-—/’;/ka

Performing the partial wave expansion and the trivial angle integrations,

the second term in (5-8) becomes

o F/ KT ¢
2 3 - m Z
- %g.h (7;\; };(uu)jd)z e ., de VR, (59

With the aid of lemma C-3, the r-integral in (5-9) may be showm to

vanish for the rigid sphere potential. Then
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OLB.i (5-10)

where B refers to the quantum mechanical second virial coeffi-

cient for a gas of rigid spheres.

ey

5.1b Evaluation of €z

With the relation
jd" l/j [Jr ar 7?{]’% =0 (5-11)

and the Schrodinger equation, the definition (3-18) of 6.2 may be

written as

TE + 2T 4B +56 + 278

(5-12)

+(KT)’ZJ:\dr \PZ% (;Y_‘;I)
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Substituting the definition of ﬁ(}f; }f) » performing the partial
wave expansion, and carrying out the angle integrations, the last term

in (5~12) becomes

o 2
Y. «»j%/mKT
L (IKT)* e

@

¢

% .

({UMJ r P Rﬁ (5~13)
©

Again, for the rigid sphere potential, the r~integral vanishes by

lemma C-3 and

comm

€, = -,JQT%B;* —-2T" 4B (5-14)

i

where the result of equation (5-~10) has been used for é:

5.1lc Evaluation of é;;

By techniques entirely analogous to those used in the treatment

et

of é% and é:x s although somewhat lengthier, it may

be shown that
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= — _105 dB 2 d°B 4=
€3 2 T “"'ZgT de “"’ZTB%T—--%B;

*(kr) ijd_v P

3 {4 5TH TR “}jd" ? 9.(esr)

“5
‘“5

~(KT) { +3Ta'}J r ‘P;(

(5~15)

After substituting the definition of %9 (r;r) and using the
partial wave expansion, the r-integrals again wvanish by lemma C-3

to give

= __105_dB _ _:4°B :d°B
ST T AT AT

L el

5.1d Ewvaluation of QI

With the partial wave expansion, the trivial angle integrations

may be carried out in the definition (4~55) of Q‘ to give
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LY

e

Then, with lemma C-3,

5.le Evaluation of Uge

136

-5
Qg = "%mhs ("WMKT‘) " ;(Z%ﬂ) X

«-g/mKT ¥ 2
) [opr oo

v.S.

(5~-18)

Introduction of the partial wave expansion into the definition

(4~69) of CT;Q allows the angle integrations to be carried

out with the result:
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(5~19)

(5~20)

for the case of the vigid sphere potential.

A o0 ) B idacnd
5.1f Evaluatidn;of" s
After substituting fhe partial wave expansion into the definition

(4-17) of C%; s, the angle integrations may be carried out to
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’0 2 (5-21)
J
X }Z ooo «, * . j R R
)
where we have introduced the Wigner 3~j symbol:
= 1) yAlg
539 = VR e
ZPE Ig +J i K (5-22)

AR = (443 Q0+ k-3 (j+ K—,e)/
(4? +j+ K+ ))'

The r-integration in (5-21) may be carried out with lemma C~l. After

some rearrangement,
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o
g“”:’%g ﬁg\ 5,

T = éé‘gg‘ﬁ”fm T)%L(Z%@j@%é € e X
0 4oz 2
x{wZ(fZﬁ%-S)(@ @Z g) (d j %)@@s ,m ,@\) *

vy (2 (20 ]

(5-23)

TS

where the triangle rule for the 3~j symbols has been used to reduce

the double sum to a single sum.

o=

5.1y Evaluation of @22

By substituting the partial wave expansion into the definition

(3-69) of (22 , the trivial angle integrations may be performed.

Then, using lemma C-4,



J
% M. 1) [ 2z 2
SRR PR BB (- 2eos Ni1- cos
gy Ky IS EB B ; | |
+ complex conjugat %E
i 00
where E? and E? are the first and second derivatiwes of
the nﬁﬁh Legendre polynomial with respect to the argument. The
gﬁ integration can be carried out with the aid of lemmas D~1 and

D-2 and the r-integrations with lemmas C~1 and C-2. The result is




10 wo? E@g(@;w Me+2) [db b € "
@

_ @’zﬁ%@ @@s(ﬁ;; 2};)}

This completes the analytic reduction of the two~bpdy contribu-

2y fz)
tions: BA . : By;’ , and CM)

. The results may now
be conveniently summarized in the form

Bﬂﬂeﬂ#g%z@ é,gl;@fs dB é}g zij

I ,,gdg)gi
T @H‘% 357 dT1?
{2) ,; 8
B}g =B ‘*@ - 5 T PEE
~® kTl =m2Y [ _ R 4°B 3@535
W (&) {W%WT a1 a7,
+ =
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y X AEYE =N
-g s’ L o € (17,)

laaad

{ [22(2,?+3) + (2f+3) - z(” QZ)]X

£+2

i) g Jen(loR) -

2 (24+3) e F i -—'/Z}
3 (24+1)(24+5) z /ZH (‘Z 7/1,*2>

T = g rmier o /5 Z(2£+b)jdz z % AE

and we have introduced




ot
D
[

ferrm  z=b8T

T VmKT = %

(5~28)

For a quantum gas of rigid spheres, the problem of computing the

two-body contribution to the first transport virial coefficients is

o

then reduced to a numerical evaluation of ng s Cj?@ 5
ol
and EB and its first three temperature derivatives. Such a

numerical treatment is considered in section 5.3.

5.2 Classical Two-body Contributions

The transport properties of a moderately dense classical gas
of rigid spheres were first treated by Enskog/a By taking into con-
sideration that the frequency of collisions in a gas of rigid spheres

differs by a factor of gp from that in a gas of point particles,

Enskog obtained the results:
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N
'
Sy

l (5-29)
72272@{? + g Tna ‘%‘@mz)
Wﬁ‘%ﬁm%@“%%\%mmﬁ

The factor é% introduces a "three-body" effect by correct-

ing for the fact that, in a moderately dense gas, the molecules are
close enough to shield one another from collisions with a third
molecule. The quantity éﬁﬁ is density dependent, with a low
density limit of unity. In & density expansion of the reciprocal of
é& , the term linear in the density corresponds classically to
our "three-body" terms ?{72%%) and éZéYg%%) . Based on the
results of Enskog, the appropriate classical rigid sphere limit fox

the "two-body" terms is then
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B@z) - ﬁngﬁg 65”30)

= (2)
Cg) = %f; @‘“»% VTB‘mKT
Log}

To compare the classical limits of equations (5~26) with the

results of Enskog, it is first necessary to obtain classical expressions

for the quantities E% s 623 , and Cﬁgg . The

second virial coefficient for a classical gas of rigid spheres is

well-known and is given by

e

3
B == § mTaT (5-31)

€y

s

Jrmm—

The classical limits of ng and ggg@ may be obtained in the
usual way; namely, by employing the Euler-MacLaurin approximation to
convert the sum over yg to an integration over the impact

4
parameter p:
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g

Z%’? gzéj@?b f— bz (5-32)
£

To zero order in jﬁ , it may be shown from the results of

Muelle‘rz5 that

(5-33)

2&%2

wﬂﬁ?"@‘“‘”““z&m e

o= [

Yo 7,

Using (5-32) and (5~33) and introducing the dimensionless variables

b

(5349




the classical limit of égg becomes
b N

g = 2 Y

_ 3w __s -w 3 2y
Q =2 o ldwwte | Jaxfr-ax)1-x7)

2] o
(5-35)
15 w
Similarly,
¢ !
="_ b : 5 W
T, =g Yamk 0 ) Jdww® € [ fdx (x-x7)
o ]

(5-36)

= %VWWKT @‘“ﬁ

Substitution of equations (5-31), (5~35), and (5-~36) into our
expressions (5-26) for the two-body contributions to the first trans-
port virial coefficients then gives agreement with the clagsical

results of Enskog.
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5.3 Numerical Treatment

It is desirable, in the course of a numerical treatment of the
results of the preceding section, to compare numerical results with
- 18 . _ s .
those of Herman™ who, using a correlation function method, computed

{z) 5 {2
the potential contributions to E% and ? for a gas of

A

hard sphere bosons. The expressions arrived at by Herman for these

potential contributions are in error by a factor of two in the case
= (2) = (2
of both Bé\ and BW .

careful comparison of his classical limits with the earlier classical

This becomes evident upon a more

results of Enskog and taking into account the fact that, in the classi-

== (2) > 2
cal case, precisely half of both EEA and Eg@ is of a
potential origin. This error, however, does not seriously affect a
comparison of the quantum corrections to these terms. In this

: ={2) 2}
section, we shall first consider the full ESA and ES , then
=) i) 7

compute their potential portions, EB 2\ and Eg AP s and

A% :?s
finally compare the latter results with those of Herman.

Throughout the preceding development, Maxwell-Boltzmann statisties
have been consistently assumed. To render a comparison with the results
of Herman feasible, it is first necessary to constzset analogues to our
expressions which are valid for Bose~Einstein statistics. In the
following, we shall consider only spinless particles. For a gas of
particles of non-zero spin, it would be necessary to introduce the usual
mixing of states.

The correct procedure here may be seen from the partial wave

expansion (5-4) which formed the basis of the development of the
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e o
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expressions (5-27) forx sy and T4 . For Bose~Einstein

statistics, the proper method is to multiply the wave function by
ﬁ?gw and allow the sum to range only over all even integers and
zero. Similarly, for Fermi~Dirac statistics, the wave functions must

again be multipliied by @E%g » but only odd integer values of
/@ are included in the sum.

It follows, therefore, that for a gas of bosons, the expressions
for Q@g and é%gg must be multiplied by a factor of
two and only even integers and zero retained in the sums over the
angular momentum quantum number. Likewise, for a gas of fermions,
the results for (33 and Efé@ must be multiplied by a
factor of twe, but only odd integer values of AJQ are to be
kept in the sums.

For numerical purposes, it is also convenient to make all
quantities in (5-26) and (5-27) dimensionless by dividing by their
respective classical limits. Then

B =Ll dB 3%72,@?5; 273@98 @?:

A dT3

— ¥ — % ~ 2 B
E% S,ES ;L)é? g>£”=7=aﬁgg é T (%ﬂjmi

— (2) ¥ o _sd*B"]°
C, =Iaf D){%T TfﬁB ﬁd‘ﬁ}

(5-37)



B.E 7 =r “*3/ d% / @
(A @&im > o
odd
% oG o 2 2 __2
= = B F
Tomas =4 220 Yz 2 (1) &
ED I pS
even
odd
e 36 &
_ 24 7 T | w/@zfz
Qagg A Z (Mwm)ﬁ% e« W
- cien s
edd
2 e U/Z& ‘ = % o —
(1) - leoh )z snl T 7) -

[zzz(zﬁw '+ (23)-

(2 -1))ellz )]

2 ®
—))
It is clear from the preceding chapter that A%wp containg
ori};?g;tems arising from %’jﬂ; and /%EEE s similarly,

involves only those from . Then, with the
N3 ' I ’




results of the last chapter, 1t is a simple matter to show that
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= 2 B d” B ¥
55 d 2 s
@A,‘%}ﬁz‘%’“g TdT‘ %"277@ 1 T 7%
(5-39)
%'&? M 12,
where
) == (2} — {R)
— ¥
e — BMW . B&‘W
Y T —=q2y \& — 0¥
B 2 3
i AsW) 5y
3 g5 (%) == (2)
— (2)
B = BZ?;“@ B .
e = __%
3¥ g@) &) 4 3
W;N?} Zg;’??acrﬂﬁ
— {2} g‘,, .
e {5-40)
GT;BE =. wﬁ 2;5&2 e x

even e

edd

LA+ zz}z

«{Z(Zﬁﬂ) z£+5){@ 5 o

+ {20+ {500




The agnalytic form of the wigid sphere phase shifts is well-

and may be written simply in terms of Bessel functions of order half

an odd integer:

-~ 21 e, ()
tam?z@ = (wﬁ)

lﬁ‘ Y (=) (5-41)
== (2)% o (2) %
With this, the evaluation of EBA . EE ,
é’«zn * Ecz»% — (ay# 7
v ’ AW , and 739 then involves only

straightforward numerical integrations of the quantities:

= (2 A} ¥ . e 3 .
uﬁc ? s @ s g . @m , and

2 30 (4
wer fE

B and its first three temperature derivatives.
In this study, calculations were made with the aid of a Univac

1108 computer, using Simpson's rule for the numerical integrations.

= %
The results, over a range of fé? values , for Eg s
=, (R} # = ()% A (Rhs
ESA s EB%? s and Cj%@ ars given in Tables 1,
== {2)H
"I, III, and IV, respectively. Tables V and VI cousist of Eg ey
5 02) # g »3¥3 BE.
and 53@0\998 E compared with the corresponding quantities,
9 g o iop &%
/ﬁ\ and ;§2 , of Herman. TFigure 1 compares E§ .
A , and E%;? for the case of Bolizmann statistics.
o= e e e fr,2) ¥
Separate dats listings for é%g s S g s e e , and

)
the firvst three temperature devivatives of = are included
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in Appendix F. The results : atively estimated to be
Pt

accurate to the number of significant figures presented.
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TABLE T

— 3 —

= ¥

Bl . Bo. Bl
+ 151.394 ~ 161.913 + 464,701
+ 112.359 -~ 71.0697 + 295,787
+ 79.3026 -~ 16.0709 + 174.676
+ 52,2074 + 11,0703 4+ 93.3445
+ 31.0313 + 18.3603 + 43,7023
+ 15,6684 + 13,8692 . 17.4675
+  5.84976 +  5.83900 +  5.86053
+ 5.15397 +  5,15089 +  5,15735
+  4.50743 +  4.50667 +  4.50819
+  3.90932 +  3.90922 +  3.90943
+  3.35879 +  3.35879 +  3.35880
+  2.85493 + 2.85492 + 2.85493
+  2.39677 +  2.39677 + 0 2.39677
+ 1.98329 + 1.98329 4+ 1.98329
+  1.61344 + 1.61344 + 1.61344
+  1.28610 +  1.28610 +  1.28610
+  1.22559 +  1.22559 4+ 1.22559
+  1.16675 +  1,16675 +  1.16675
+  1.13798 + 1.13798 + 1.13798
+1.10954 4 1.10054 +  1.10954

+  1.053%0 +  1.05390 + 1.05390
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TABLE 11

= {ay® — 23 %
ﬁg 'ﬁ;agj MED
7.00 + 332,988 ~ 810,211 + 1476.19
6.00 + 246,316 ~ 438,633 + 931.265
5.00 + 173.022 ~ 194,951 + 540.996
4,00 + 113.013 ~ 53.6704 + 279.696
3.00 + 66.2392 + 10.7589 + 121.720
2.00 4 32.4509 + 23.5854 + o 41.3163
1.00 + 11.1677 + 11.2161 + 11.1193
0.90 +  9.68791 +  9.78497 +  9.59085
0.80 +  8.30942 +  8.42122 +  8.19762
0.70 +  7.02633 + 7.12137 + 6.93129
0.60 +  5.83584 +  5.88510 +  5.78659
0.50 +  4.74033 +  4.74390 + 4.73677
0.40 +  3.74816 +  3.74318 +  3.75315
0.30 +  2.87201 +  2.87186 +  2.87216
0.20 +  2.12379 4+ 2.12380 + 2.12379
0.10 +  1.50593 +  1.50593 +  1.50593
0.08 + 1.39677 +  1.39677 +  1.39677
0.06 +  1.29298 +  1.29208 +  1.29298
0.05 +  1.24119 +  1.24119 +  1.24119
0.04 +  1.19126 +  1.19126 + 1.19126
0.02 +  1.09613 +  1.09613 +  1.00613



0.90
0.80
0,70
0.60
0.50
0.40

0.30

0.10
0.08
0.06
0.05
0.04

0.02

+ 130.507

+ 97.8804
+ 70.1766

+ 47,3243
+ 29.1639

+  15.3953

+  6.13430
+  5.46090
+  4.80887
4+ 4,16865
+  3.53769
+  2.92532
+  2,35465
+ 1.85849
+  1.46825
+  1.19414
4+ 1.15103
+ 1.11080
+ 1.09164
+  1.07303
+ 1.04119

seg

)

1

1

1

== {2)#
Byee
1159.70
697.485
375.042
167.658
50.9042
1.03124

6.08301

4.37774
3.64812
2.93335
2.34343
1.85816
1.46825
1.19414
1.15103
1.11080

1.09164

(923

P

L8217

.18559
.31610
-58153
-95955
42726
.91730
. 36586
.85882

46825

15103
.11080
09164
.07303

.04119
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TABLE LV

— [2) % = (2} % — (2) ¥

!g éﬁﬁ@ﬁf@& %w}?; B.E. e LAY
7.00 + 50,4717 + 98,0002 + 2.9432
6.00 + 37,5013 + 72.0006 + 3.0019
5.00 + 26.4817 + 50,0013 + 2.9621
4,00 + 17.4893 + 32,0039 + 2.9746
3.00 + 10.5091 + 18.0153 + 3.0028
2.00 + 5.55036 + 8.08795 + 3.01276
1.00 + 2.51114 + 2.62999 +2.39228
0.90 + 2.30060 + 2.35902 + 2.24217
0.80 + 2.10411 + 2.12836 +2.07986
0.70 + 1.92051 + 1.92886 + 1.91215
0.60 ’ + 1.74905 + 1.75152 + 1.74658
0.50 + 1.58945 + 1.59012 + 1.58878
0.40 + 1.44174 + 1.44189 + 1.44158
0.30 + 1.,30620 + 1.30623 + 1.30617
0.20 + 1.18380 + 1.18380 + 1.18379
0.10 + 1.07715 + 1.07715 + 1.07715
0.08 + 1.05830 + 1.05830 + 1.05830
0.06 + 1.04058 + 1.04058 + 1.04058
0.05 + 1.03222 + 1.03222 + 1.03222
0.04 + 1.02425 + 1.02425 + 1.02425

0.02 + 1.00995 + 1.00995 + 1.00995



0.50

0.40

0.30

0.20

0.10

0.08

0.06

0.05

fen

L0042
0023
0006

99868



.60
.50
.40
.30
.20
.10
.08
.06
.05
.04

.02

¥ Interpolated

15¢

82375
84240
85410
86732
88723
9213 ¥
.93126
.94298
L04968
.95710

97486
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Several convenient checks on the numerical methods are readily
gvailable. First, as /é? tends‘toward zero, all starred quanti-
ties must approach unity as a limit. For large values of fé? s

computations may be compared with series expressions which follow
directly from the definitions (5~37) and (5-38) and a consideration
" of the asymptotic behavior of Bessel functions. Some examples of

such asymptotic series are those for the reduced rigid sphere second

virial coefficient:
& .7 +3 N P )fezs/@m&f’+ |
Bso\tz. 2 /6 2 + 920 o0

—
B o 3VYm s g =2
100 ese

It may be noted that the expressions (5-42) differ from the low temp~
erature series given in Hirschfelder, Curtiss, and Birdq3 which appear

to be in error.
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5.4 Classical Three~body Contributions

The three~body countributions to the first transport virvial
coefficients of a classical gas have been obtained in approximate form
by Hoffmanla. These expressions reduce to particularly simple forms
for a gas of rigid spheres. No such simple reduction appears possible
in the full quantum case, however. Moreover, for the rigid sphere
potential, a semi-classical treatment would be invalid for reasons
discussed in Appendix E. Consequently, in this section, we develop

{3) {3)
only the classical expressions for EBA and Eﬂ% and
compare the results with those of Hoffman.

From equation (E-14) and the definitions of 7%2 and fﬁ%; 5

it follows trivially that

] 4]
"= R =0
§ 2 —

To develop the classical limits of ?{(?@) and ifyg) s it

is convenient to first rewrite their definitions (3-88) and (3-~103)

back in terms of the é}g operator:
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(5~44)

As discussed in Appendix E, QZZ; is not a function of momentum

in the classical case. Consequently,

fo ¥ - YlorF=yularl oo

where 3@3 s, the classical limit of y@ in Hoffman's

notation, is discussed in Appendix E and defined by equation (E-19).
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IV T T
Since ?jégég??ggj satisfies the two-particle Wigner
equation, it must satisfy it dndependently for all oxders of f% .
Therefore,

{ar) =2{poFf

(5~46)

Substituting equations (5~45) and (5-46) into (5-44) and integrating

by parts on r then produces the following expressions for the classi-

cal limits of ?{fgg and f?%ﬁ@}

A

K == b [arapabar L oL D Tp-4f
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Using the resulis of equations (3-8) for A and B, the ?
integration may be carried out. After removing terms from the integrand

which are odd in %2 with the symmetry relations (3-22),

X C’(%) = 2" (% ) = (mKT) ( O z»)

(5-48)

D AR J
x |drdd df € F (y-¥) g'o’rﬁf‘ﬁ}

where we have introduced the dimensionless variables

b

= e d, = kT (5-49)

il

2,20 %
and gigﬂjls is the reduced form of the usual classical
(2,2)

‘S::Lm integral:

(2,2)% - (2,2) _— Y, (2,2)
O ) So o
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1t follows from the fact that F is a distribution function
defined on the velative motion space of two particles that the classi~

cal limit of F must simply be a delta function on a classical

trajectory:
-3
€ 2
F g(mKT) g@;w@y)
(5~51)
where
2 .2 k@/
§
(V) =Y + Y
(5~52)
With this resulit, the gy integration in (5~48) may be per~

el <

formed trivially to yield, in Hoffman's notation,

-1

%7?@) = Xém{%e} = - é’%;z (@mm?z)% R (5~53)

where
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Z
Ly v z J
Q%ﬁ‘?‘z&){;ﬁ*dg e {gli} gh’ QE 5@3 (5-54)

Combining equations (5-3), (5-43), and (5~53), we have finally

\° ( (ai)c' i { (z,z)*)“‘ |
T B TR

v

Hoffman has shown that, for a classical gas of rigid spheres,

the integral R reduces to

e § €1

Pl

2 Emn
R = 8T B, | (5-56)

where C is the third vivial coefficient. Then,

(Bl3’)c3 N (gm)cs 5 ct
A 77 o oo (5-57)



Both equations (5-55) and (5~57) ce with the resulis which Hoff

obtained by a purely classical argument.
5.5 Discussion

The formalism developed in the preceding chapters has been shown
to produce the accepted low density limits of the thermal conductivity
and the shear viscosity, in both the full quantum and classical cases.
The two-body contributions to the first transport virial coefficilents
were found in section 5.2 to agree with the results of Enskog for the
case of a classical gas of rigid spheves. As a test of our expressions

{3} i35
for the three-body contributions, E%} and Eg% ware
computed for a classical gas interacting through an arbitrary repulsive
potential and for the particular case of the rigid sphere. Agreement
with the previous results of Hoffman was found in each case. There
is no three-body contribution to ij%@ for either a classical or a
quantum gas.

The quantum two-body contributions to the first transport virial
coefficients were computed for the vigid sphere potential. Tt may be
seen from Tables V and VI that our results for the potential portions
of these quantities agree very closely with those produced by the
correlation function approach used by Herman. Such excellent numerical
agreement immediately suggests an underlying analytic agreement. How-
ever, this seems not to be the case. The two treatments produce results

) , ¥ ., .
which differ in the strong quantum region, but are nearly identical

in the region fZ?‘€ jy which was considared by Herman and compared




in the present study. This situation is not wholly unexpected since

6]

the two approaches are radically different and, understandably,
involved slightly different mathematical techniques and approximations.
In view of this, and ignoring the factor of two problems in Herman's
work, the extent qf the agreement 1s quite surprisingg

The correlation function method does not vet seem to have produced

{2 §2Y

expresssions for the full E%A and EB%’ , including kinetic
contributions. Such a study would permit a further, and much more
interesting, comparison. The reason for this is that, as may be seen

i2)
from Chapter IV, our development of formal expressions for Eﬁx%%>

f=d
and EB

;P

Boltzmann equation. Therefore, the agreement of these results with

required only the solution to the lowest order

* Tn the strong quantum region c,g» 1 )

h-5- 347 v

ggg NS igg F %%gi%é?ﬁm% F oo

9;¢; B.-E.
_ R0 3 =%
;ﬁ\ o~ j;” + ?55/5? P

= (2)% -2
acd q‘;:ﬁg;@ f:% ;3'—-—5/@ +®®@
A3\ s B.E. 9 3
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Herman's for the rigid sphere case does not alleow any inferences about

) f2% =, (2}
the quality of our expressions for the full ij% and Eg%
since these involved the solution to the second order Bolizmann equa-
tion in their kinetic contributions. It may be observed that, fox
B(Z% =~y (2)
the purpose of developing results for - and %% the
purp ping /\? k@ ?%W s
Boltzmann equation approach used here is thus far simpler than the
correlation function method.
It would be satisfying to appeal to experiment as a test of our
B {2) 5 {2
results for the full A and 2? . Two problems prevent
doing this in a detailed and meaningful way. First, determining the
two~-body contributions to E%A and Ei? from experimental
data involves several assumptions which are questionasble at best.
Secondly, in the temperature <xegion in which quantum effects become
measurable, it is doubtful whether the rigid sphere potential adequately
represents any real system.
Herman has attempted a rough correlation of his calculations with
experimental data for the rare gases. His analysis of the experimental
(2} B«Z’»
data available indicates that, for these gases, both E% and
A L
are increasing funcitions of ,é? . Herman's results, which in-
cluded only potential contributions, suggest the opposite dependence
_ (=)
in the case of Eg%’ and much smaller slopes than are observed
experimentally in both cases. Including the kinetic contributions
removes this apparent anomaly and produces more realistic slopes to
{2)

= ()
D
the E%A Versus jé? and E§- versus AT curves .

Y
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We consider it unwise, particularly in light of the unvealistic

nature of the rigid sphere potgntial, to press further any attempt to
= {2} = €2y

fit our results for B% and B?f to experimental data,
even for the rare gases. A better approach would be to consider a
more realistic potential, then compare with experiment. Even this
suggestion is hampered somewhat by the scarcity of reliable low

§2)
temperature experimental data and the tenugus position of E%A and

(2)

82& as experimental quantities.

A full quantum treatment of the three~body contributions to E%A
and EB?V , for the case of rigid spheres or any other potential,
would appear to be a difficult proposition. A semi-classical treatment,
based on the methods outlined in Appendix E, is possible for non-

singular potentials and might profitably be undertaken.




APPENDIX A
g‘g

DEVELOPMENT OF }i;

In thig}appendix, the results of de Boer23 are shown to lead
to an <£e of the form (2~56) for a gas of particles which
interact through a purely repulsive potential. The treatment and
notation are essentially those of de Boer.

To second order in the activity, the matrixzx form of the config-

urational probability density function for a single particle may be

written

nloie) = blesg)z + XEZ(WE”) z"

=15 (a-1)

where the E% are expressed in terms of the Slater sums:

- 172 -
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The Slater sum for a single particle is given by
L2
Wi A)g %{ﬁ B «;ﬂ/ ~F kT
0 fﬁgffo = Tg dg r ?’=n> (fﬁ > 6 (A=3)

Since there is no interaction, the wave functions are simply those for

a free particle, and

Z
s A : . if“{g“".@n "”P; T
W) = () dp e ‘ e

(A-4)
2

r')

T (r-
— @G’A“‘ -
The two~particle Slater sum is defined by
‘yg %
boal ) = =B/, ,
WJ%%%%%&?—?A §f(‘@aw>€ % ’}x{y«u‘} (h-5)
‘ P L L.

where the E@;@ are solutions to the Schrodinger equation:

4 (A-6)



¢

For a purely repulsive intermolecular potential, all sclutions to
equation (A~6) lie in the continuum and the summation over states in
(A-5) may be replaced by an integration over momenta.

Changing to center-of-mass and relative motion coordinates then
allows the wave function to factor on this basis. The wave functions
for the center-of-mass motion may then be written as plane waves to

give

-Yemur £ P-(R-R') (A=7)

The integration over the center—of-mass momentum may be carried out

directly to yield

(A-8)

where ég;( ;&w) is the matrix formulation of the quantum mechanical

radial distribution function defined in (2~57),
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With (A~4) and (A-8), the single particle configurational prob-

ability density function becomes

nle:s’) = p @”%m@m {i - n O@L [ g@@;ﬁwﬂ +

ﬁa(«f{ _’f; 3 &?Z”m 4 o

where
Z~ n-n"\dy {;b(&ff;f) -1+ Ot (4-10)

4
has been used to express V?a(E;§’§: } as an expansion in the number
density.
The Wigner distribution function is related to the configurational

probability density by




(A-11)

Substitution ofA(A-9) into (A~1l) then leads directly to the form
N

(2~56) for
€



APPENDIX B
h
LEMMAS ON % s F , AND G

1€ 2
In chapters I, III, and IV, twelve integrals involving ;?@
F , and G were encountered. Since all twelve may be expressed in
terms of the delta function or its derivatives, the integrals are
considered together, in this appendix, in the form of lemmas. Lemmas

5, 6, 7, 9, 11, and 12 have been proved previously by Imam-RahajoeL6

and their proofs are only outlined here for ease of reference.

Lemma B-1
R
d“"% e @
Proof:
A
Using the definition (2-56) of %; and the Fourier repre-
sentation of the delta function,
b4
A Ys

2t = (A |eds S0 @ ¥
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and the rvesult follows on i the trivial deltas function

integration.

Lemma B~2

X
4P Pﬁ? = mKT €,

e i

Proof:

With the Fourier representation of the delta function, the LHS

may be written as

B%-Tarsz
- Az

z 3 ¢
“%% drds € (f§l§£ éfgé{g}

Integrating by parts on s twice and performing the trivial delta

function integration, the lemma follows.

Lemma B-3

»

eh

=p i & So

Z f )
@Wﬁ = (mKT) {€,+5€
J




Proof:

The LHS may be written as

(ﬁ}% @&%%?z Zﬁs ( ( }(f }%
U Jdeds € fﬂ"* réﬁwﬁw Js 3508

After integrating by parts four times on s, carrying out the trivial
delta function integration, and introducing the definition (3-18) of

the é% integrals, we obtain the desired result.

Lemma B-4

dP P;@

e

@(mKﬁ {’mg + 7 zz €, t &

Proof:

Expressed in terms of the Fourier delta function, the LHS

becomes

) fheds 0 © 17 g@(gw;r s) - JM} "

= =
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After integrating by parts on s six times, and carvying out the delta

function integration, introduction of the definition (3~18) completes

the proof.

5&}2 F= y/(z‘;ﬁj g}/(r;}v@)

Proof:

With the definition (2-22) of F Y, #; }) , the LHS may be
- ]

written

ds %/(rv;s;}?@) V’(r@;@ & (s)

Performing the trivial delta function integration then gives the

lemma.

Lemma B-6

OF
by =

=3




Proof:

Writing the LHS in terms of the delta function,

% f A% S5 Yevs Vos, b

This may be integrated by parts on s to yield

J d *
ds $(s) ;593} %ﬁé;#,) %(f—:@;]b@)

Performing the trivial delta function integration then gives finally

{y/(&" #) or ér gl/(rpbo) %ﬁ%)é}f";ﬁ gj{ﬁ”@}

which vanishes on substitution of the relative motion Schrodinger

equation.



Lemma B~7

JapF =-E{Yedy yshy
Wy W gj!,lf’}
dr

= —— EETETOT
Jr Jr
where the ¥ and ‘;% dependence of the wave function has been
suppressed in the notation,
Proof:
With the Fourier representation of the delta function, the LHS

may be expressed as

2

g as Js 5(3)}9/(“ i) %H”#)

After integrating by parts on s twice to give

182



the delta function integration maybbe carried out to complete the

Lemms B-8
Sdrd# };,}? %; = ()
Proof:

With equation (3~73), the r integration may be carpied out

directly to yield

H

[ lsoperbrth) 4 spp I7

which vanishes on completion of the integration over the angles of

)2 ‘and use of the definition (3~72) of ;E?

Lemma B-9

JF Yy v
j\"&#’;? =7 % g%? L/’/(r;#»)af}}(r;k)
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Proof:

The lemma follows directly by differentiation of lemma B-7 and

substitution of the Schrodinger equation.

Lemma B-~10

G b =

= )?j A }f)jag { sk -F }

-1
where A is an arbitrary function of ;% o
Proof:

Using the divergence theorem, it may be simply shown that

Jeeep st = Jae & -(peF)-F}

—bficF o i o= Jdodp v &-(prF)

r+~& g

By substituting the asymptotic form of F given in equation (3-71)

into the surface integral, this becomes
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z f‘%

fog ﬂ

+ |im rzjdéa’ﬁ sinB gg%@@géﬁwéﬁ +

Vo o} S

+lim j\d@ dﬁSEm@ _g (,bf){@”(@@)é(kﬂk@“’ 5&"@5@”’@2}

=l S

The first surface integral on the RHS has no poles, so the divergence

theorem may be used to convert it back to a volume integral:

. gdff %g f‘-#fdz’ {g(#gﬁ)&;} ¥

+lim Vioagsind §-(e)or@Sp-RE-5( st

¥rred S“

If we then multiply both sides of the equation by ,%%{}%> and

integrate over %%
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The second term on the RHS vanishes on completion of the trivial

and ;% , and the

i<

integrations over the angles of

lemma follows.

Lemma B-11

Bh3 b = b Y W

Proof:

Using the Fourier representation of the delta function, the LHS

may be written as




187

""”’ ézj(f"’%k) ‘S’;E;

After an integration by parts and some rearrangement, this may be put

in the form:

g J.dd 1
“‘—2— ds 8(5)ds "ar de % r-5;b-a) %M‘)’*"‘)

==

- It may be shown from the Schrodinger equation that

L d Yeshoo) Ynshre) =

,{W(r )~ Plr+s)+im 0"9;9}?#@ @f) g}(r«m}z%—a“‘)

Substitution into the LHS of the lemma then gives
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3 | E

and the lemma follows directly.

Lemma B-12

2, 4 L
dppicb =g ima H -

e e
“”?P?gj@?r éri}y %’ljér@)v‘ 2;};35]

where the tensor H has been defined in equation (3-69).

Proof:

The same type of manipulations used in the proof of lemma B-11

allows the LHS to be written as




%}(m_e 0’}%?‘4»5 -@»@W}

Substitution of the identity employed  im* lemma B~1l then leads to

5(15 053 E—{W(r—@ \P(*“**S)*‘““"wb}

g ME—@;%@ %(N;@;}zw’)j

: g =0

Performing the indicated operations then gives the lemma.



- APPENDIX €

LEMMAS ONM RIGID SPHERE WAVE FUNCTIONS

In chapter V, four lemmas fnvolving wxigid sphéw@ wave functione
were int‘;roducedn Before beginning the proofs of these lemmas, it is
necessary to construct a suitable expression for the wigld sphere
wave funcéion which is wvalid in the naighborhood of the boundaxy.

We first consider an intermoleculay potentisl of the forms

&Q = 0 S

= M e
where pﬂ is very large and will larer be allowed to become

infinite to obtain the xigid spheve Limit. The radial Schrodinger

equation (5-6) then assumes the approximate form:

o

{J P L

2 0) fa. NV o)
d” pf _AEEIDT A e
dr’ g ET Ly TV e
R T
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with solution

R, = A:)( h) exp {%t m} ree

0 b 2\
R; ") = (1%";{32) {C‘os %‘m J,;*Vz (l‘;it) ¥

+h) s L..,z(%’)} oo

where 7]1 (M) s as’uir'xdiéated, is a function of the step

height M

By matching wave functions and first derivatives at the boundary,

! ()
«) JRl) () O’R,q
RI C)V‘ = Rx JV‘

a a

we obtain the proper functional form for W! (M)
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tan ] (M) =

){ﬁm @“’>‘j+a< ) %%JZ»%(
{s M (5 v - )J (i@’}}

Substitution into the boundary condition then allows the function

=

%)

m—%@@f‘”

13
(#} to be uniquely determined. After lengthy manipulation,

it may then be shown that

R = (™ (ﬁm}y&(% )-/zexf 3 Yo (- @")}

where 22? has been defined in equation (5~41) and is the
usual rigid sphere phase shift. With this result, the lemmas can

now be proved.

Lemma C-1 C-1

~dy £ 1L 4 &



Proof:

i"%

HS may be integrated by parts to give

: j; 0 §{rRRS

Based upon the step potential discussed earlier, for rigid spheres,

the LHS then may be written

'3 §6) _ ‘48
-»hmM dr dm{ R R }@“‘EmMr%K )%

M=l 4

This may be expressed equivalently as

g
ﬁhm am M?‘ R R
€0’ M-
(64
Substituting the explicit form for Fgg and taking the

limits in the order indicated then gives the lemma.
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S
"%
=g

#
gﬁﬁg

g,
AR
R

(e,
P
3

L ES—

&

Proof:

Using the same techniques involved in the proof of lemma C-1,
the LHS of lemma (-2 may integrated by parts and written in terms of

the step height M:

)%
0 g%ﬁ) i 0 &&
Jamﬂ rz”’{ E ig *";“"Bé’m gim M%” R @b}% .

M+L o €0’ Moo

@

4

Taking the limits in the order indicated completes the proof.
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Lemma C-3

aw&?n%%ﬁg jen<ed

.8,

Proor:

With the same methods used in the proofs of the first two lemmas,

the LHS of C-3 may be expressed as

o e

E>0" M=o o

After substituting explieitly for the wave functions, the integration

may be performed directly to yield:

%

¥
G
s
R
&,




Taking the limits in the order indicated then gives the lemma.

Lemma C-4

Proof:

The proof follows directly upon differentiation of the rigid

sphere wave function in the limiting form discussed previously.

K59

i
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PENDIX D

LEMMAS ON LEGENDRE POLYNOMIALS

In this appendix, we consider two relations involving Legendre
polynomials which were used in Chapter V. Again, for ease of vefer-

ence, the relations are developed in the form of lemmas.

Lemma D-1
.

Zﬁej dx x (x l)‘{ - °8a}§

.a

Z

4 P+2 2

; {/@*Zsﬁé ’5;;.94»2 } (Z«Q + 3) 0o 0 O/

Wi

Proof:

With the aid of the identity connecting derivatives of Legendre

‘polynomials with the polynomials:

lemma D~1 may be shown to yield:
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i 0 } (£ -1 1Y
000 =4jloo o)

Substitution of this result into the LHS of lemms D~1 and use of the

triangle rule for the 3~j symbols then gives

D gz 2V 002 2
8
;{3(0 0 O)/gfégm B 8 00 o)/@ 42

2 B
+24 %

Jumping the index by two in the second and third terms, the
lemma follows directly

Lemma D=2

For é;g

such that V=
§ gﬁ

)/@w¢ wz{igq){a@ﬁﬂ g)z | ?
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Proof:

After very lengthy, though straightforward, manipulations in-~
volving the differential equation satisfied by the Legendre polynomials,

the integral on the LHS of lemma D-2 may be shown to give

IEAN
d%%ﬁ}%%ﬁ% A+ +ili+0-3T o0 o

This result may then be substituted into the LHS of lemma D-2. TUse

of the triangle rule for 3-j symbols then yields
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Wi

5 (s o ]
4

With the defined symmetry of the %ﬁa , intreassing the index

by two in the second term completes the proof.




APPENDIX E

PROPERTIES OF %;

In the first part of this appendix, we show that, for a gas of
particles which interact through a purely repulsive potential, the
low dengity limit of ?@ is unity. Later, the first density
correction to %g is discussed for the classical case.

To derive the low density limit of. \Kg s we temporarily

define the formal density expansion of Yg as

\{; = of +n% + @"{n@)%“ D

where @( is, at this point, conceivably a function of r,
‘F , and P. Retaining only terms quadratic in the number density
in the equilibrium form of equation (2-17) then defines 4 in

A

b

1@

terms of the low density limit of the pair distribution function,

=t Jir b dph ol bhle b 1) (0

(E-2)

- 20L =
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Changing to center-of~mass and relative motion coordinates and

(=)

substituting the explicit expression (2~14) for the aiflm@ﬂ
operator, the trivial delta function integrations may be performed

to give

2 6 s
‘E@E@( ‘}% @q?b@ @E’PQ/MKT F(ﬁf;%ﬁ) (E-3)

Now, from the results of de Boerzz, the matrix form of the

configurational probability density is defined by

nz(rgsif,g”) = nzwz(fgsrdgy> + @(Vﬁ)*aw (B

where, for a purely repulsive potential, the second Slater sum is
given by equation (A-8). The equilibrium pair distribution function

g
is then expressed in terms of “'nz(z g§ r” B ) by
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Combining equations (A-8), (E~4), and (E~5) and carrying out the

5x§ integration then yields:
=2

% = ((% @&f&@ evk/m” Hﬁ@b?ﬁbﬁ (£~6)

€

Comparison of equations (E~3) and (E~6) then gives the result:

<=1

(E-7)

We now consider the first density correction to the classical
\Y; . Wigner and Kirkwood26 have developed a technique which

is appropriate for constructing a semi~classical expansion for gZZ; .
Using this formalism, terms through order ﬁiz have been cbtained.
However, since ;Zég is not analytic in 7% for singular
potentials such as the rigid sphere, we develop only the classical
term here.

From the results of Wigner and Kirkwood, the classical N-particle

Slater sum may be written in matrix form as

N T {)ﬁ
w@”, - ”ﬁ% w0y
r..r: r' )= @K e (E-8)
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where VN refers to the Neparticle potential. The classical config~
urational probability density function for a single particle, to

second order in the activity, is given in matrix form by

e
2
g
S

d=-
—
il
M

- ]

—~

23

is
ot
te

(E-9)
2 Rﬁﬂcﬁ €4 (]
o ‘ 0).‘., [ w I3
+Z @Lz g&bowmawz M(Kwﬁ> O(Eg%r,@)
ter
(@)
The analogous function for two particles, to third order in the
activity, is
C)
co( . 0) z -
) F“ g °
nz ﬁqrz?ﬁa =2 & 2 rarz?ra Ez> +
(E-10;

Combining the result (E~8) with equations (E~9) and (E-10) then

gives
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where additivity of potentials has been assumed and Vij refers to
the potential of interaction between particles i and j.

Equations (A~11) and (E-5) may then be used to relate ﬁ? (Ea%gf)
and F“ﬂ;ﬂ (EB ﬁfg%fao f;) to the classical Wigner distribuiion functions
for one and two particles, respectively. Substituting (E-11) and

performing the integrations over § and J

b 3 wa _ Vi K
g}(%} € qz+z g@gie N “”ﬂ

¥

s

2 4.2 Y V / T .
M b W, wwzw L2 T =Wg - Va3 ' (E-12)
Fof e L e e 1]



B
[
[9)N

In the classical case, the activity is related to the number density

by

~2 (E-13)
Substitution of (E~13) into equations (E~12) then gives
ct 3 2
fo=nf) e
e Wl €
& 2 Z V (E"lzf‘)
ch )
7[“ {A} W, ~W - % nz +
e \h
J/bg = 23
3 KT KT
+n o je -1 e -1
: G4
&
where ';; is complete here through order {1 (and demon~-
0

S e
strably complete through all orders of the number density) and ;;@
is complete through terms cubic in n.

Retaining only terms cubic in the number density in the equilibrium

form of equation (2-~17) then defines in terms of the first

density correction to the equilibrium pair distribution function:
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B Jdﬁ@@gg@d%@&%ﬁ@ d@l{z‘;%ﬁjﬁjr@%@%@ﬂ%@} *

W%}

(E~15)

After changing to center-of-mass and relative motion coordinates and
, f2)

substituting the explicit expression (2~14) for the ggjtzsq?

operator, the trivial delta function integrations may be performed.

Then, by substituting the results:of equations (E~14) and rearranging

slightly, the classical analogue of equation (E~15) may be written:

A 3 3
| DT S
g@:z (Zﬁﬁ {h @ dﬂ,@@ ﬁ (@%}f/gggm%/g}
' \ f (E-16)
where gju(r * %ﬂ% = %ﬁ) vefers to the classical limit

of the matrix form of the radial distribution defined in equation (2-57).
From the result (E~8) for the classical limit of the second

Slater sum, 1t is stralghtforward to show that
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f*fﬁ;f@?ﬁf@ = @ T @ (E-17)

Substituting equation (E~17) into (E~16) and carrying out the /Q

integration then gives

- e* e

(E-18)

Comparing (E-18) with the second of equations (E~14) then finally

gives
€
gz; = E&EGD =
,,%/ _ - (E~19)

oA Vaz
=l je®r -1 9€ T -]

. e . 14 o - , :
where %%gﬁj is Hoffman's notation for the same integral.



APPENDIX F

NUMERICAL RESULTS FOR RIGID SPHERE INTEGRALS

In this appendix, we list numerical data for several of the

_—
rigid sphere integrals encountered in Chapter V. Listings for G,
are not given since this integral is identical to the quantity
= (2) % :
E% which is detailed in Chapter V. The integrals
e =3¢ v o =
ng s CQB , and the temperature derivatives of E%
‘were computed directly from their definitions in equations (5-38).
: o (232»*' ’
Values of the €2 integral were obtained using the

form given in Hirschfelder, Curtiés, and Bird4:

_ ()" 8 (A+1)(f+2)
ﬂaaso = A,L/g ‘; ((2,@+3) i
E.D. even :
odd
(F-1)
.

a2 2
s P E . 2
* |d= 2 e sin %gﬁy;%

@

where their expression has been converted to our notation. The numerieal

= (2,2) %
results for the g§?22 integrals agree fairly well with

the éarly results of Uehling27, who lacked the advantage of a high

speed electronic computer.
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TABLE VIL

s g = 5% < s

3:Bollz. @35 B.E, @gg@; B,
+ 1019.61 + 1977.18 + 62.0317
+ 747,14 % 1432.62 + 61.6349
+ 516,973 & 972,939 + 61,0064
4 329,366 + 598,975 + 59,7558
+ 184,827 + 312,737 + 56.9174
+ 84,0207 + 119,188 + 48.8534
+ 24,9478 + 25,5857 + 24.3099
+  20.3727 +  19.7268 + 21.0185
+  16.8878 +  15.9648 + 17.8107
¢ 13.8712 +  13.0334 + 14,7089
+ 11.3229 ' + 10.8812 + 11.7646
+  9.19482 +  9.16271 + 9.22692
+ 7.38332 4 7.42818 4 7.33845
+  5.74460 4 5.74592 + 5.74328
+ 4,14023 0 4.14020 4 4.14025
+  2.51562 +  2.51562 + 2.51562
+  2.19556 +  2.19556 + 2.19556
4 1.88135 4 1.88135 + 1.88135
¢ 1.72712 + 0 1.72712 + 1.72712
£ 1.57414 + lu5§£1ﬁ + 1.57414

+ 0 1.25974 + 1.25974 +1.25974




7.00
6.00
5.00
4.00
3.00
2.00
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.08
0.06
0.05
0.04

0.02

E

4

4

4

3

+

4

—

@@ % @@at .

49,3153
36.4080
25.5426
16.7414
10.0276
5.37064
2.50366
2.29605
2.10096
1.91807
1.74713
1.58801
1.44073
1.30558
1.18348
1.07706
1.05824
1.04055
1.03220
1.02424

1.00995

TABLE VIT

4

S

e

e

+

4=

I

e W
@;% B.E.

98.0001
72,0003
50.0008
32.0028
18.0128
8.08357
2.62968
2.35798
2.12659
1.92679
1.74966
1.58868
1.44088
1.30561
1.18349
1.07706
1.05824
1.04055
1.03220
1.02424

1.00995

4=
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@@; FD,

0.630555
0.815768
1.08447
1.47993
2.04234
2.65770
2.37763
2.23412
2.07533
1.90934
1.74460
1.58733
1.44057
1.30555
1.18348
1.07706
1.05824
1.04055
1.03220
1.02424

1.00995




s
7.00
6.00
5.00
4.00
3.00
2.00
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.08
0.06
0.05
0.04

0.02

—
d

Tdr B@gama

I

1

1

1

1

I

147.101
108.132
75.1781
48,2506
27.3644
12.5249
3,60342
3.01966
2.48873
2.00960
1.58112
1.20210
0.871282
0.587212
0.348410
0.153282
0.119309
0.087037
0.071566
0.056410

0.027415

TABLE IX

d =%
T47 Bes,

oo

+

389.994
214,773

99.3447

31.7569
0.0665
7.65123
3.54792
2.99984
2.48353
2.00875
1.58106
1.20210
0.871282
0.587212
0.348410
0.153282
0.119309
0.087037
0.071566
0.056410

0.027415

@% — ¥
Tdr Bm

684.
431,
249,

128.

17.

54.

195
036
701
258
7952

3985

.65982
.03947
49392
.01044
.58118
.20210
.871282
.587212
<348410
.153282
.119309
087037
.071566

056410




]

7.00
6.00
5.00
4.00
3.00
2.00
1.00
0.90
0.80
0370
0.60
0.50
0.40
0.30
0.20
0.10
0.08
0.06
0.05
0.04

0.02

2d” =%
T ZFF@ B@a%iq
+ 294,012
+ 216.019
+ 150.035
+ 96,0705
+ 54,1544
+ 24,3585
+  6.65601
+ 5.55698
+  4.50812
+ 3.59723
+ 2.79168
+  2.08876
+  1.48570
+ 0.978977
+ 0.565106
+  0.240265
+  0.185521
+  0.134223
4+ 0.109947
+ 0.0862822
+  0.0416569

TABLE X
zggi” 5
T 47 B@,E,

-~ 1121.86

- 644771

- 323.135

- 127.057

- 26.6425
+7.93623
+ 6.34724
+ 5.40344
+ 4.47090
+ 3.59005
+  2.79103
+  2,08875
+  1.48570
+ 0.978977
+  0.565106
+ 0.240265
+  0.185521
+0.134223
+  0.109947
+  0.0862822
+ 0.0416569

db 5
T & B,
+ 1709.89
+ 1076.81
+ 623.205
+ 319.198
+ 134,951
+ 40,7808
+ 6.96478
+ 5.65051
+ 4.54534
+ 3.60441
+ 2.79233
+ 2.08877
+ 1.48570
+ 0.978977
+ 0.565106
4 0.240265
+ 0.18552"
+ 0.134223
+ 0.109947
+ 0.0862822
+ 0.04165609



A

7,00
6.00
5.00
4.00
3.00
2.00
1.00
0.90

0.80

-0.70

0.60
0.50
0.40
0.30
0.20
0.10
0.08

0.06

0.05

0.04

0.02

TABLE XI

7r3¢;i E§¥ w§”3§£i§E§%

dT?® “Boltz. dT° “s.e.
~ 882.006 + 4220.52
- 647.578 + 2473.55
~ 450,012 + 1280.95
~ 288.039 + 540,643
~ 162,115 + 147,094
- 72,4274 -~ 4.32839
- 19.2364 ~  17.3692
~ 15.8851 - 15,0611
- 12.8741 -~ 12.5931
- 10.1967 -~ 10.1333
- 7.84439 - 7.83733
- 5.80839 -~ 5.80820
-~ 4.08012 - 4.08012
-~ 2.64749 -~ 2.64749
-~ 1.49891 -~ 1.49891
-~ 0.621479 -~ 0.621479
-~ 0.476952 -~ 0.476952
-~ 0.342852 - 0.342852
- 0.280048 -~ 0.280048
- 0.219162 -~ 0.219162
- 0.105611 -~ 0.105611

1

i

I

1
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72
<324
.526
.1035

. 7091
L1551
L2601
-85145
.80858
.08012
64749
.49891
621479
.476952
. 342852
.280048
.219162

.105611




7.00
6.00
5.00
4.00
3.00
2.00
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
6;20
0.10
0.08
0.06
0.05
0.04

6.02

— (2,20 %
B@h{;Zo
3.89411

3.86190
3.80746
3.71321
3.53331
3.14160
2.27192
2.15437
2.03291
1.90817
1.78071
1.65104
1.51962
1.38688
1.25337
1.12026
1.09399
1.06798
1.05483
1.04154

1.00469

TABLE XIT
— (2,2)%
B.E,
7.77660

7.70326
7.57527
7.34086
6.85261
5.64451
2.75436
2.44718
2.18265 |
1.96844
1.79843
1.65472
1.52016
1.38693
1.25337
1.12026
1.09399
1.06798
1.05483
1.04154

1.00469

0

0.

[

[

sy

N3

— {7,2)%
F;Do

01162
02055
.03964
.08555
. 21401
.63871
. 78952
.86156
.88318
.84791
. 76300
64737
.51907
. 38683
.25337
.12026
.09399
06798
.05483
.04154

.00469

(933
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